Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 839
Filtrar
Más filtros

Intervalo de año de publicación
1.
Int J Biol Macromol ; 276(Pt 1): 133732, 2024 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-39002919

RESUMEN

γ-aminobutyric acid (GABA) plays an important role in anti-anxiety by inhibiting neurotransmitter in the central nervous system (CNS) of mammals, which is generated in the germinating seeds. The key enzymes activity of GABA metabolism pathway and nutrients content in hemp seeds during germination were studied after treated with ultrasound and CaCl2. The mechanism of exogenous stress on key enzymes in GABA metabolism pathway was investigated by molecular dynamics simulation. The results showed that ultrasonic combined with 1.5 mmol·L-1CaCl2 significantly increased the activities of glutamate decarboxylase (GAD) and GABA transaminase (GABA-T) in seeds, and promoted the conversion of glutamate to GABA, resulting in the decrease of glutamate content and the accumulation of GABA. Molecular dynamics simulations revealed that Ca2+ environment enhanced the activity of GAD and GABA-T enzymes by altering their secondary structure, exposing their hydrophobic residues. Ultrasound, germination and CaCl2 stress improved the nutritional value of hemp seeds.

2.
Stroke ; 55(8): 2151-2162, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38946544

RESUMEN

BACKGROUND: GPR65 (G protein-coupled receptor 65) can sense extracellular acidic environment to regulate pathophysiological processes. Pretreatment with the GPR65 agonist BTB09089 has been proven to produce neuroprotection in acute ischemic stroke. However, whether delayed BTB09089 treatment and neuronal GPR65 activation promote neurorestoration remains unknown. METHODS: Ischemic stroke was induced in wild-type (WT) or GPR65 knockout (GPR65-/-) mice by photothrombotic ischemia. Male mice were injected intraperitoneally with BTB09089 every other day at days 3, 7, or 14 poststroke. AAV-Syn-GPR65 (adenoassociated virus-synapsin-GPR65) was utilized to overexpress GPR65 in the peri-infarct cortical neurons of GPR65-/- and WT mice. Motor function was monitored by grid-walk and cylinder tests. The neurorestorative effects of BTB09089 were observed by immunohistochemistry, Golgi-Cox staining, and Western blotting. RESULTS: BTB09089 significantly promoted motor outcomes in WT but not in GPR65-/- mice, even when BTB09089 was delayed for 3 to 7 days. BTB09089 inhibited the activation of microglia and glial scar progression in WT but not in GPR65-/- mice. Meanwhile, BTB09089 reduced the decrease in neuronal density in WT mice, but this benefit was abolished in GPR65-/- mice and reemerged by overexpressing GPR65 in peri-infarct cortical neurons. Furthermore, BTB09089 increased the GAP43 (growth-associated protein-43) and synaptophysin puncta density, dendritic spine density, dendritic branch length, and dendritic complexity by overexpressing GPR65 in the peri-infarct cortical neurons of GPR65-/- mice, which was accompanied by increased levels of p-CREB (phosphorylated cAMP-responsive element-binding protein). In addition, the therapeutic window of BTB09089 was extended to day 14 by overexpressing GPR65 in the peri-infarct cortical neurons of WT mice. CONCLUSIONS: Our findings indicated that delayed BTB09089 treatment improved neurological functional recovery and brain tissue repair poststroke through activating neuronal GRP65. GPR65 overexpression may be a potential strategy to expand the therapeutic time window of GPR65 agonists for neurorehabilitation after ischemic stroke.


Asunto(s)
Accidente Cerebrovascular Isquémico , Ratones Noqueados , Neuronas , Receptores Acoplados a Proteínas G , Animales , Receptores Acoplados a Proteínas G/metabolismo , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/agonistas , Ratones , Accidente Cerebrovascular Isquémico/metabolismo , Masculino , Neuronas/metabolismo , Neuronas/efectos de los fármacos , Rehabilitación de Accidente Cerebrovascular , Fármacos Neuroprotectores/farmacología , Ratones Endogámicos C57BL
3.
ACS Appl Mater Interfaces ; 16(27): 34840-34849, 2024 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-38946061

RESUMEN

Adopting noble metals on non-noble metals is an effective strategy to balance the cost and activity of electrocatalysts. Herein, a thorough analysis of the synergistic OER is conducted at the heterogeneous interface formed by Ir clusters and NiCo2O4 based on DFT calculations. Specifically, the electrons spontaneously bring an eg occupancy of interfacial Ir close to unity after the absorbed O, providing more transferable electrons for the conversion of the absorbed O-intermediates. Besides, the diffuse distribution of electrons in the Ir 5d orbital fills the antibonding orbital after O is absorbed, avoiding the desorption difficulties caused by the stronger Ir-O bonds. The electrons transfer from Ir to Co atoms at the heterogeneous interface and fill the Co 3d band near the Fermi level, stimulating the interfacial Co to participate in the direct O-O coupling (DOOC) pathway. Experimentally, the ultrathin-modulated NiCo2O4 nanosheets are used to support Ir clusters (Ircluster-E-NiCo2O4) by the electrodeposition method. The as-synthesized Ircluster-E-NiCo2O4 catalyst achieves a current density of 10 mA cm-2 at an ultralow overpotential of 238 mV and works steadily for 100 h under a high current of 100 mA cm-2, benefiting from the efficient DOOC pathway during the OER.

4.
Small ; : e2404290, 2024 Jul 20.
Artículo en Inglés | MEDLINE | ID: mdl-39032148

RESUMEN

The Ag cluster-POM assemblies have been shown to possess interesting and potentially useful properties. However, there is no precedent example of atomically precise Ag cluster-POM assemblies showing heterojunction effects in photocatalysis. Herein, the synthesis and total structure determination of the periodically distributed molecular heterojunction [Ag12(SCy)6(CH3CN)12(PW12O40)]n (Ag12-PW12) are reported. The assembly of Ag/W clusters into 3D network can endow the resulting binary structure with an aesthetic topology and unique physicochemical properties. More remarkably, the incorporation of Ag12 cluster with PW12 can efficiently facilitate the separation of photogenerated electrons and holes, thus significantly promoting the catalytic efficiency in selective oxidation of sulfides. The Ag12-PW12 heterojunction can be recovered and reused five times with no drastic change in the catalytic performance. This research is expected to assist in the rational design of cluster-based heterojunction catalysts. The increase of catalytic activity of the Ag12-PW12 assembly in comparison with the unassembled Ag12 and PW12 clusters is attributed to the synergistic effect of Ag12 and PW12 clusters, offering the splendid opportunity for deciphering structure-reactivity relationship of heterostructure-coupled photosystem.

5.
Tissue Cell ; 90: 102483, 2024 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-39059132

RESUMEN

OBJECTIVE: Wound therapies utilizing gene delivery to the skin offer considerable promise owing to their localized treatment benefits and straightforward application. This study investigated the impact of skin electroporation of CYP1A1 shRNA lentiviral particles on diabetic wound healing in a streptozotocin (STZ)-induced rat model. METHODS: Male Sprague Dawley (SD) rats were made diabetic by injecting STZ and subsequently creating foot skin wounds. The rats were randomly divided into four groups: normal, diabetic foot ulcers (DFU), DFU + control shRNA (electroporation of control shRNA lentiviral particles), and DFU + CYP1A1 shRNA (electroporation of CYP1A1 shRNA lentiviral particles). Wound healing progress was monitored at multiple time points (0, 1, 3, 5, 7, 10, 14 days). On day 14, wound tissue specimens were collected for histological examination. Wound samples collected at days 7 and 14 were used for gene expression analysis via qRT-PCR, assessment of CYP1A1 protein levels using western blotting, and evaluation of oxidative stress markers. RESULTS: Treatment with CYP1A1 shRNA significantly enhanced diabetic wound healing rates compared to untreated controls over the observation period. Histological analysis revealed improved wound characteristics in the CYP1A1 shRNA-treated group, including enhanced epithelial regeneration, reduced inflammation, and increased collagen deposition, indicative of improved tissue repair. Furthermore, suppression of CYP1A1 corresponded with decreased expression levels of pro-inflammatory cytokines (interleukin-1ß, tumor necrosis factor-α, and interleukin-6) and diminished oxidative stress markers (malondialdehyde, superoxide dismutase) within wound tissues. CONCLUSION: Targeted suppression of CYP1A1 represents a promising therapeutic strategy to enhance diabetic wound healing by modulating inflammation and oxidative stress.

6.
Molecules ; 29(14)2024 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-39064918

RESUMEN

The rapid growth of electronic devices, electric vehicles, and mobile energy storage has produced large quantities of spent batteries, leading to significant environmental issues and a shortage of lithium resources. Recycling spent batteries has become urgent to protect the environment. The key to treating spent lithium-ion batteries is to implement green and efficient regeneration. This study proposes a recycling method for the direct regeneration of spent lithium iron phosphate (LFP) batteries using hydrothermal reduction. Ascorbic acid (AA) was used as a low-cost and environmentally friendly reductant to reduce Fe3+ in spent LiFePO4. We also investigated the role of AA in the hydrothermal process and its effects on the electrochemical properties of the regenerated LiFePO4 cathode material (AA-SR-LFP). The results showed that the hydrothermal reduction direct regeneration method successfully produced AA-SR-LFP with good crystallinity and electrochemical properties. AA-SR-LFP exhibited excellent electrochemical properties, with an initial discharge specific capacity of 144.4 mAh g-1 at 1 C and a capacity retention rate of 98.6% after 100 cycles. In summary, the hydrothermal reduction direct regeneration method effectively repairs the defects in the chemical composition and crystal structure of spent LiFePO4. It can be regarded as a green and effective regeneration approach for spent LiFePO4 cathode materials.

7.
Environ Geochem Health ; 46(8): 270, 2024 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-38954122

RESUMEN

Radioactive nuclides cesium (Cs) and strontium (Sr) possess long half-lives, with 135Cs at approximately 2.3 million years and 87Sr at about 49 billion years. Their persistent accumulation can result in long-lasting radioactive contamination of soil ecosystems. This study employed geo-accumulation index (Igeo), pollution load index (PLI), potential ecological risk index (PEPI), health risk assessment model (HRA), and Monte Carlo simulation to evaluate the pollution and health risks of Cs and Sr in the surface soil of different functional areas in a typical mining city in China. Positive matrix factorization (PMF) model was used to elucidate the potential sources of Cs and Sr and the respective contribution rates of natural and anthropogenic sources. The findings indicate that soils in the mining area exhibited significantly higher levels of Cs and Sr pollution compared to smelting factory area, agricultural area, and urban residential area. Strontium did not pose a potential ecological risk in any studied functional area. The non-carcinogenic health risk of Sr to the human body in the study area was relatively low. Because of the lack of parameters for Cs, the potential ecological and human health risks of Cs was not calculated. The primary source of Cs in the soil was identified as the parent material from which the soil developed, while Sr mainly originated from associated contamination caused by mining activities. This research provides data for the control of Cs and Sr pollution in the surface soil of mining city.


Asunto(s)
Radioisótopos de Cesio , Minería , Contaminantes Radiactivos del Suelo , Medición de Riesgo , China , Contaminantes Radiactivos del Suelo/análisis , Radioisótopos de Cesio/análisis , Humanos , Radioisótopos de Estroncio/análisis , Cesio/análisis , Ciudades , Suelo/química , Método de Montecarlo , Monitoreo de Radiación
8.
Artículo en Inglés | MEDLINE | ID: mdl-38958649

RESUMEN

A novel slightly halophilic, aerobic, and Gram-stain-negative strain, designated as CH-27T, was isolated during a bacterial resource investigation of intertidal sediment collected from Xiaoshi Island in Weihai, PR China. Cells of strain CH-27T were rod-shaped with widths of 0.3-0.6 µm and lengths of 2.0-11.0 µm. Strain CH-27T grew optimally at 37 °C, pH 7.0 and with 2.0 % (w/v) NaCl. Catalase activity was weakly positive and oxidase activity was positive. Phylogenetic analysis based on 16S rRNA gene sequences revealed that strain CH-27T was most related to Marinihelvus fidelis KCTC 92639T (93.6 %), followed by Wenzhouxiangella marina MCCC 1K00261T (92.0 %). Based on genome comparisons between strain CH-27T and M. fidelis KCTC 92639T, the average amino acid identity was 63.6 % and the percentage of conserved proteins was 48.3 %. The major cellular fatty acid of strain CH-27T (≥10 %) was iso-C15 : 0 and the sole respiratory quinone was quinone-8. The polar lipids were phosphatidylglycerol, phosphatidylethanolamine, diphosphatidylglycerol, and aminophospholipid. The DNA G+C content was 62.7 mol%. Based on comprehensive analysis of its phylogenetic, physiological, biochemical, and chemotaxonomic characteristics, strain CH-27T represents a novel species in a novel genus, for which the name Elongatibacter sediminis gen. nov., sp.nov. is proposed. The type strain is CH-27T (=MCCC 1H00480T=KCTC 8011T).


Asunto(s)
Técnicas de Tipificación Bacteriana , Composición de Base , ADN Bacteriano , Ácidos Grasos , Sedimentos Geológicos , Filogenia , ARN Ribosómico 16S , Análisis de Secuencia de ADN , Ácidos Grasos/química , Sedimentos Geológicos/microbiología , China , ARN Ribosómico 16S/genética , ADN Bacteriano/genética , Genoma Bacteriano , Fosfolípidos/química
9.
Chem Commun (Camb) ; 60(63): 8292-8295, 2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-39022919

RESUMEN

Novel carbonyl-N embedded hetero[7]helicene diastereomers incorporating axially chiral binaphthyl were facilely synthesized and separated. The separated homochiral hetero[7]helicenes exhibit intense green photoluminescence and circularly polarized luminescence (CPL) with luminescence dissymmetry factors (glum) of 1.4 × 10-3 due to the intrinsic helical multiple-resonance skeleton.

10.
J Am Chem Soc ; 2024 Jul 29.
Artículo en Inglés | MEDLINE | ID: mdl-39073804

RESUMEN

Ultrasound (US)-mediated piezocatalytic tumor therapy has attracted much attention due to its notable tissue-penetration capabilities, noninvasiveness, and low oxygen dependency. Nevertheless, the efficiency of piezocatalytic therapy is limited due to an inadequate piezoelectric response, low separation of electron-hole (e--h+) pairs, and complex tumor microenvironment (TME). Herein, an ultrathin two-dimensional (2D) sulfur-vacancy-engineered (Sv-engineered) Cu@SnS2-x nanosheet (NS) with an enhanced piezoelectric effect was constructed via the heterovalent substitution strategy of Sn4+ by Cu2+. The introduction of Cu2+ ion not only causes changes in the crystal structure to increase polarization but also generates rich Sv to decrease band gap from 2.16 to 1.62 eV and inhibit e--h+ pairs recombination, collectively leading to the highly efficient generation of reactive oxygen species under US irradiation. Moreover, Cu@SnS2-x shows US-enhanced TME-responsive Fenton-like catalytic activity and glutathione depletion ability, further aggravating the oxidative stress. Both in vitro and in vivo results prove that the Sv-engineered Cu@SnS2-x NSs can significantly kill tumor cells and achieve high-efficiency piezocatalytic tumor therapy in a biocompatible manner. Overall, this study provides a new avenue for sonocatalytic therapy and broadens the application of 2D piezoelectric materials.

11.
Acta Biomater ; 2024 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-39069112

RESUMEN

Immunotherapy can enhance primary tumor efficacy, restrict distant growth, and combat lung metastasis. Unfortunately, it remains challenging to effectively activate the immune response. Here, tertiary butyl, methoxy, and triphenylamine (TPA) were utilized as electron donors to develop multifunctional photosensitizers (PSs). CNTPA-TPA, featuring TPA as the donor (D) and cyano as the acceptor (A), excelled in reactive oxygen species (ROS) generation due to its smaller singlet-triplet energy gap (ΔES-T) and larger spin-orbit coupling constant (SOC). Additionally, cyano groups reacted with glutamate (Glu) and glutathione (GSH), reducing intracellular GSH levels. This not only enhanced PDT efficacy but also triggered redox dyshomeostasis-mediated ferroptosis. The positive effects of photodynamic therapy (PDT) and ferroptosis promoted immunogenic cell death (ICD) and immune activation. By further combining anti-programmed cell death protein ligand-1 (anti-PD-L1) antibody, the powerful treatments of ferroptosis-assisted photodynamic immunotherapy significantly eradicated the primary tumor, inhibited the growth of distant tumor, and suppressed lung metastasis. In this study, a three-pronged approach was realized by single-component CNTPA-TPA, which simultaneously served as metal-free ferroptosis inducers, type-I photosensitizers, and immunologic adjuvants for near-infrared fluorescence imaging (NIR FLI)-guided multimodal phototheranostics of tumor. STATEMENT OF SIGNIFICANCE: (1) CNTPA-TPA shared the smallest singlet-triplet energy gap and the largest spin-orbit coupling constant, which boosted intersystem crossing for efficient type-I photodynamic therapy (PDT); (2) Special reactions between cyano groups with glutamate and glutathione in mild conditions restricted the biosynthesis of intracellular GSH. GSH-depletion efficiently induced glutathione peroxidase 4 inactivation and lipid peroxide, resulting in ferroptosis of tumor cells; (3) The combination treatments of ferroptosis-assisted photodynamic immunotherapy induced by single-component CNTPA-TPA with the participation of anti-PD-L1 antibody resulted in increased T-cell infiltration and profound suppression of both primary and distant tumor growth, as well as lung metastasis.

12.
Rev Cardiovasc Med ; 25(5): 183, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-39076489

RESUMEN

Background: Pulmonary artery catheters (PAC) are widely used in patients undergoing off-pump coronary artery bypass (OPCAB) grafting surgery. However, primary data suggested that the benefits of PAC in surgical settings were limited. Therefore, the present study sought to estimate the effects of PAC on the short-term outcomes of patients undergoing OPCAB surgery. Methods: The characteristics, intraoperative data, and postoperative outcomes of consecutive patients undergoing primary, isolated OPCAB surgery from November 2020 to December 2021 were retrospectively extracted. Patients were divided into two groups (PAC and no-PAC) based on PAC insertion status. Data were analyzed with a 1:1 nearest-neighbor propensity score matched-pair in PAC and no-PAC groups. Results: Of the 1004 Chinese patients who underwent primary, isolated OPCAB surgery, 506 (50.39%) had PAC. Propensity score matching yielded 397 evenly balanced pairs. Compared with the no-PAC group (only implanted a central venous catheter), PAC utilization was not associated with improved in-hospital mortality in the entire or matched cohort. Still, the matched cohort showed that PAC utilization increased epinephrine usage and hospital costs. Conclusions: The current study demonstrated no apparent benefit or harm for PAC utilization in OPCAB surgical patients. In addition, PAC utilization was more expensive.

13.
Molecules ; 29(11)2024 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-38893413

RESUMEN

Beer is a popular alcoholic beverage worldwide. However, limited research has been conducted on identifying key odor-active components in lager-type draft beers for the Chinese market. Therefore, this study aims to elucidate the odor characteristics of the four most popular draft beer brands through a sensory evaluation and an electronic nose. Subsequently, the four draft beers were analyzed through solid-phase microextraction and liquid-liquid extraction using a two-dimensional comprehensive gas chromatography-olfactometry-mass spectrometry analysis (GC×GC-O-MS). Fifty-five volatile odor compounds were detected through GC×GC-O-MS. Through an Aroma Extract Dilution Analysis, 22 key odor-active compounds with flavor dilution factors ≥ 16 were identified, with 11 compounds having odor activity values > one. An electronic nose analysis revealed significant disparities in the odor characteristics of the four samples, enabling their distinct identification. These findings help us to better understand the flavor characteristics of draft beer and the stylistic differences between different brands of products and provide a theoretical basis for objectively evaluating the quality differences between different brands of draft beer.


Asunto(s)
Cerveza , Cromatografía de Gases y Espectrometría de Masas , Odorantes , Compuestos Orgánicos Volátiles , Cerveza/análisis , Odorantes/análisis , Compuestos Orgánicos Volátiles/análisis , China , Microextracción en Fase Sólida/métodos , Humanos , Olfatometría , Nariz Electrónica , Extracción Líquido-Líquido/métodos , Aromatizantes/análisis
14.
Huan Jing Ke Xue ; 45(6): 3176-3185, 2024 Jun 08.
Artículo en Chino | MEDLINE | ID: mdl-38897741

RESUMEN

Rivers are important reservoirs of antibiotic resistance genes (ARGs). However, most current studies have focused on the temporal and spatial distribution, and data on the differences in the species and abundance of ARGs between urban and rural rivers is still lacking for certain areas. In view of this, two rural rivers and three urban rivers were selected in Shijiazhuang City. In both December 2020 and April 2021, sediments were collected at 15 sampling sites. Metagenomic sequencing technology was used to compare the differences in temporal-spatial variation for ARGs in sediments. The results showed that:① 162 and 79 ARGs were detected in urban (4 776 ±4 452) and rural rivers (1 043 ±632), respectively. The abundance and species of ARGs in urban rivers were higher than those in rural rivers. ② The relative abundances of sulfonamide (SAs,27 %), aminoglycoside (AGs,26 %), and multidrug (MDs,15 %) ARGs had the highest abundance in urban rivers, whereas the relative abundance of MDs ARGs was highest in rural rivers (65 %). On the whole, the complexity of ARGs in urban rivers was higher than that in rural rivers. ③ There was a significant positive correlation between SAs, AGs, MDs, tetracycline, phenicol, macrolides-lincosamids-streptogramins (MLS), ß-lactams, and diaminopyrimidine ARGs in urban rivers (P < 0.01); however, there was a significant negative correlation between glycopeptide ARGs and all types of ARGs (P < 0.05 and P < 0.01). There was a significant positive correlation between MDs and SAs ARGs in rural rivers (P < 0.05), but there was a significant negative correlation between amino aminocoumarin, peptide, rifamycin, and fosfomycin ARGs (P < 0.05 and P < 0.01). ④ For the temporal variation in urban rivers, 162 ARGs (4 776 ±4 452) and 148 ARGs (5 673 ±5 626) were detected in December and April, respectively. For the temporal variation in rural rivers, 79 species (1 043 ±632) and 46 species (467 ±183) were detected in December and April, respectively. ⑤ RDA analysis results showed that the spatial-temporal distributions of ARGs in urban and rural rivers were different. Correlation analysis showed that the ARGs in urban rivers were significantly correlated with the number of industrial enterprises, whereas the ARGs in rural rivers were significantly correlated with the output value of animal husbandry. In general, this study identified the main influencing factors for ARGs in different rivers and provided data support for ARGs risk management in different rivers.


Asunto(s)
Ciudades , Farmacorresistencia Microbiana , Sedimentos Geológicos , Ríos , Sedimentos Geológicos/microbiología , China , Farmacorresistencia Microbiana/genética , Monitoreo del Ambiente , Genes Bacterianos , Análisis Espacio-Temporal , Antibacterianos/análisis
15.
World J Clin Cases ; 12(16): 2847-2855, 2024 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-38899296

RESUMEN

BACKGROUND: The prognosis of hepatocellular carcinoma (HCC) combined with portal and hepatic vein cancerous thrombosis is poor, for unresectable patients the combination of targeted therapy and immune therapy was the first-line recommended treatment for advanced HCC, with a median survival time of only about 2.7-6 months. In this case report, we present the case of a patient with portal and hepatic vein cancerous thrombosis who achieved pathologic complete response after conversion therapy. CASE SUMMARY: In our center, a patient with giant HCC combined with portal vein tumor thrombus and hepatic vein tumor thrombus was treated with transcatheter arterial chemoembolization (TACE), radiotherapy, targeted therapy and immunotherapy, and was continuously given icaritin soft capsules for oral regulation. After 7 months of conversion therapy, the patient's tumor shrank and the tumor thrombus subsided significantly. The pathology of surgical resection was in complete remission, and there was no progression in the postoperative follow-up for 7 months, which provided a basis for the future strategy of combined conversion therapy. CONCLUSION: In this case, atezolizumab, bevacizumab, icaritin soft capsules combined with radiotherapy and TACE had a good effect. For patients with hepatocellular carcinoma combined with hepatic vein/inferior vena cava tumor thrombus, adopting a high-intensity, multimodal proactive strategy under the guidance of multidisciplinary team (MDT) is an important attempt to break through the current treatment dilemma.

16.
Int J Biol Macromol ; 272(Pt 1): 132873, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38838890

RESUMEN

The decoctions of sunflower (Helianthus annuus L. HAL) stalk pith have been used to treat advanced cancer, and polysaccharide of sunflower stalk pith (HSPP) was key ingredient of the decoctions. To forage specially structured HSPP with anti-tumor effects and to uncover its mechanisms of anticancer activity, syngeneic mouse model of lung carcinoma metastasis was established and the HSPP was found to contain long-chain fatty acid. Encouragingly, the mean survival of the polysaccharide group (47.3 ± 12.8 d) and its sub-fractions group HSPP-4 (50.7 ± 13.0 d) was significantly increased compared with control group (38.7 ± 12.7 d) or positive control group (41.8 ± 13.4 d), (n = 20, P < 0.01 vs. the control group or positive control group). Furthermore, the HSPP exerted inhibitory effects on the tumor cells' metastasis. Eventually, it is postulated that the polysaccharide could inhibit tumor proliferation and metastasis by reduction of TNF-α from the macrophage.


Asunto(s)
Proliferación Celular , Helianthus , Metástasis de la Neoplasia , Polisacáridos , Factor de Necrosis Tumoral alfa , Helianthus/química , Animales , Polisacáridos/farmacología , Polisacáridos/química , Factor de Necrosis Tumoral alfa/metabolismo , Ratones , Proliferación Celular/efectos de los fármacos , Línea Celular Tumoral , Transducción de Señal/efectos de los fármacos , Humanos , Neoplasias Pulmonares/patología , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/tratamiento farmacológico
17.
Emerg Microbes Infect ; 13(1): 2341144, 2024 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38847579

RESUMEN

The public's health is gravely at risk due to the current global outbreak of emerging viruses, specifically SARS-CoV-2 and MPXV. Recent studies have shown that SARS-CoV-2 mutants (such as Omicron) exhibit a higher capability to antagonize the host innate immunity, increasing their human adaptability and transmissibility. Furthermore, current studies on the strategies for MPXV to antagonize the host innate immunity are still in the initial stages. These multiple threats from emerging viruses make it urgent to study emerging virus-host interactions, especially the viral antagonism of host antiviral innate immunity. Given this, we selected several representative viruses that significantly threatened human public health and interpreted the multiple strategies for these viruses to antagonize the host antiviral innate immunity, hoping to provide ideas for molecular mechanism research that emerging viruses antagonize the host antiviral innate immunity and accelerate the research progress. The IAV, SARS-CoV-2, SARS-CoV, MERS-CoV, EBOV, DENV, ZIKV, and HIV are some of the typical viruses. Studies have shown that viruses could antagonize the host antiviral innate immunity by directly or indirectly blocking antiviral innate immune signaling pathways. Proviral host factors, host restriction factors, and ncRNAs (microRNAs, lncRNAs, circRNAs, and vtRNAs) are essential in indirectly blocking antiviral innate immune signaling pathways. Furthermore, via controlling apoptosis, ER stress, stress granule formation, and metabolic pathways, viruses may antagonize it. These regulatory mechanisms include transcriptional regulation, post-translational regulation, preventing complex formation, impeding nuclear translocation, cleavage, degradation, and epigenetic regulation.


Asunto(s)
Inmunidad Innata , SARS-CoV-2 , Humanos , SARS-CoV-2/inmunología , Interacciones Huésped-Patógeno/inmunología , Virosis/inmunología , Virosis/virología , COVID-19/inmunología , COVID-19/virología , Animales , Enfermedades Transmisibles Emergentes/virología , Enfermedades Transmisibles Emergentes/inmunología
18.
Am J Epidemiol ; 2024 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-38918040

RESUMEN

Prenatal exposures to ambient particulate matter (PM2.5) from traffic may generate oxidative stress, and thus contribute to adverse birth outcomes. We investigated whether PM2.5 constituents from brake and tire wear affect levels of oxidative stress biomarkers (malondialdehyde (MDA), 8-hydroxy-2'-deoxyguanosine (8-OHdG)) using urine samples collected up to three times during pregnancy in 156 women recruited from antenatal clinics at the University of California Los Angeles. Land use regression models with co-kriging were employed to estimate average residential outdoor concentrations of black carbon (BC), PM2.5 mass, PM2.5 metal components, and three PM2.5 oxidative potential metrics during the 4-weeks prior to urine sample collection. 8-OHdG concentrations in mid-pregnancy increased by 24.8% (95% CI: 9.0, 42.8) and 14.3% (95% CI: 0.4%, 30.0%) per interquartile range (IQR) increase in PM2.5 mass and BC, respectively. The brake wear marker (barium) and the oxidative potential metrics were associated with increased MDA concentration in the 1st sample collected (10-17 gestational week), but 95% CIs included the null. Traffic-related air pollution contributed in early to mid-pregnancy to oxidative stress generation previously linked to adverse birth outcomes.

19.
J Fungi (Basel) ; 10(6)2024 Jun 08.
Artículo en Inglés | MEDLINE | ID: mdl-38921401

RESUMEN

BACKGROUND: Selenium (Se) pollution poses serious threats to terrestrial ecosystems. Mushrooms are important sources of Se with the potential for bioremediation. Pre-eminent Se resources must possess the ability to tolerate high levels of Se. To obtain Se-accumulating fungi, we isolated selenite-tolerance-enhanced Ganoderma lucidum JNUSE-200 through adaptive evolution. METHODS: The molecular mechanism responsible for selenite tolerance and accumulation was explored in G. lucidum JNUSE-200 by comparing it with the original strain, G. lucidum CGMCC 5.26, using a combination of physiological and transcriptomic approaches. RESULTS: G. lucidum JNUSE-200 demonstrated tolerance to 200 mg/kg selenite in liquid culture and exhibited normal growth, whereas G. lucidum CGMCC 5.26 experienced reduced growth, red coloration, and an unpleasant odor as a result of exposure to selenite at the same concentration. In this study, G. lucidum JNUSE-200 developed a triple defense mechanism against high-level selenite toxicity, and the key genes responsible for improved selenite tolerance were identified. CONCLUSIONS: The present study offers novel insights into the molecular responses of fungi towards selenite, providing theoretical guidance for the breeding and cultivation of Se-accumulating varieties. Moreover, it significantly enhances the capacity of the bio-manufacturing industry and contributes to the development of beneficial applications in environmental biotechnology through fungal selenite transformation bioprocesses.

20.
Mil Med Res ; 11(1): 34, 2024 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-38831462

RESUMEN

The gut microbiome is closely associated with human health and the development of diseases. Isolating, characterizing, and identifying gut microbes are crucial for research on the gut microbiome and essential for advancing our understanding and utilization of it. Although culture-independent approaches have been developed, a pure culture is required for in-depth analysis of disease mechanisms and the development of biotherapy strategies. Currently, microbiome research faces the challenge of expanding the existing database of culturable gut microbiota and rapidly isolating target microorganisms. This review examines the advancements in gut microbe isolation and cultivation techniques, such as culturomics, droplet microfluidics, phenotypic and genomics selection, and membrane diffusion. Furthermore, we evaluate the progress made in technology for identifying gut microbes considering both non-targeted and targeted strategies. The focus of future research in gut microbial culturomics is expected to be on high-throughput, automation, and integration. Advancements in this field may facilitate strain-level investigation into the mechanisms underlying diseases related to gut microbiota.


Asunto(s)
Microbioma Gastrointestinal , Microbioma Gastrointestinal/fisiología , Humanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA