Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Base de datos
Tipo de estudio
Tipo del documento
Intervalo de año de publicación
1.
Mol Ecol ; 18(23): 4841-53, 2009 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-19889039

RESUMEN

Despite intense interest in conservation of marine turtles, spatial ecology during the oceanic juvenile phase remains relatively unknown. Here, we used mixed stock analysis and examination of oceanic drift to elucidate movements of hawksbill turtles (Eretmochelys imbricata) and address management implications within the Caribbean. Among samples collected from 92 neritic juvenile hawksbills in the Cayman Islands we detected 11 mtDNA control region haplotypes. To estimate contributions to the aggregation, we performed 'many-to-many' mixed stock analysis, incorporating published hawksbill genetic and population data. The Cayman Islands aggregation represents a diverse mixed stock: potentially contributing source rookeries spanned the Caribbean basin, delineating a scale of recruitment of 200-2500 km. As hawksbills undergo an extended phase of oceanic dispersal, ocean currents may drive patterns of genetic diversity observed on foraging aggregations. Therefore, using high-resolution Aviso ocean current data, we modelled movement of particles representing passively drifting oceanic juvenile hawksbills. Putative distribution patterns varied markedly by origin: particles from many rookeries were broadly distributed across the region, while others would appear to become entrained in local gyres. Overall, we detected a significant correlation between genetic profiles of foraging aggregations and patterns of particle distribution produced by a hatchling drift model (Mantel test, r = 0.77, P < 0.001; linear regression, r = 0.83, P < 0.001). Our results indicate that although there is a high degree of mixing across the Caribbean (a 'turtle soup'), current patterns play a substantial role in determining genetic structure of foraging aggregations (forming turtle groups). Thus, for marine turtles and other widely distributed marine species, integration of genetic and oceanographic data may enhance understanding of population connectivity and management requirements.


Asunto(s)
Variación Genética , Genética de Población , Tortugas/genética , Animales , Región del Caribe , Conservación de los Recursos Naturales , ADN Mitocondrial/genética , Geografía , Haplotipos , Modelos Biológicos , Análisis de Secuencia de ADN , Movimientos del Agua
2.
Mol Biol Evol ; 9(3): 457-73, 1992 May.
Artículo en Inglés | MEDLINE | ID: mdl-1584014

RESUMEN

Evidence is compiled suggesting a slowdown in mean microevolutionary rate for turtle mitochondrial DNA (mtDNA). Within each of six species or species complexes of Testudines, representing six genera and three taxonomic families, sequence divergence estimates derived from restriction assays are consistently lower than expectations based on either (a) the dates of particular geographic barriers with which significant mtDNA genetic clades appear associated or (b) the magnitudes of sequence divergence between mtDNA clades in nonturtle species that otherwise exhibit striking phylogeographic concordance with the genetic partitions in turtles. Magnitudes of the inferred rate slowdowns average eightfold relative to the "conventional" mtDNA clock calibration of 2%/Myr sequence divergence between higher animal lineages. Reasons for the postulated deceleration remain unknown, but two intriguing correlates are (a) the exceptionally long generation length most turtles and (b) turtles' low metabolic rate. Both factors have been suspected of influencing evolutionary rates in the DNA sequences of some other vertebrate groups. Uncertainities about the dates of cladogenetic events in these Testudines leave room for alternatives to the slowdown interpretation, but consistency in the direction of the inferred pattern, across several turtle species and evolutionary settings, suggests the need for caution in acceptance of a universal mtDNA-clock calibration for higher animals.


Asunto(s)
Evolución Biológica , ADN Mitocondrial/genética , Variación Genética , Tortugas/genética , Animales
3.
Nature ; 352(6337): 709-11, 1991 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-1876185

RESUMEN

The endangered Kemp's ridley sea turtle (Lepidochelys kempi) nests almost exclusively at a single locality in the western Gulf of Mexico, whereas the olive ridley (L. olivacea) nests globally in warm oceans. Morphological similarities between kempi and olivacea, and a geographical distribution that "...makes no sense at all under modern conditions of climate and geography", raise questions about the degree of evolutionary divergence between these taxa. Analysis of mitochondrial (mt) DNA restriction sites shows that Kemp's ridley is distinct from the olive ridley in matriarchal phylogeny, and that the two are sister taxa with respect to other marine turtles. Separation of olive and the Kemp's ridley lineages may date to formation of the Isthmus of Panama, whereas the global spread of the olive ridley lineage occurred recently. In contrast to recent examples in which molecular genetic assessments challenged systematic assignments underlying conservation programmes, our mtDNA data corroborate the taxonomy of an endangered form.


Asunto(s)
Tortugas/clasificación , Animales , ADN Mitocondrial/genética , Mapeo Restrictivo , Homología de Secuencia de Ácido Nucleico , Tortugas/genética
4.
Science ; 248(4956): 724-7, 1990 May 11.
Artículo en Inglés | MEDLINE | ID: mdl-2333522

RESUMEN

Female green turtles exhibit strong nest-site fidelity as adults, but whether the nesting beach is the natal site is not known. Under the natal homing hypothesis, females return to their natal beach to nest, whereas under the social facilitation model, virgin females follow experienced breeders to nesting beaches and after a "favorable" nesting experience, fix on that site for future nestings. Differences shown in mitochondrial DNA genotype frequency among green turtle colonies in the Caribbean Sea and Atlantic Ocean are consistent with natal homing expectations and indicate that social facilitation to nonnatal sites is rare.


Asunto(s)
ADN Mitocondrial/genética , Orientación , Facilitación Social , Tortugas/fisiología , Animales , Femenino , Genotipo , Modelos Psicológicos , Tortugas/genética
5.
Proc Natl Acad Sci U S A ; 86(2): 573-6, 1989 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-16594013

RESUMEN

Green turtles (Chelonia mydas) that nest on Ascension Island, in the south-central Atlantic, utilize feeding grounds along the coast of Brazil, more than 2000 km away. To account for the origins of this remarkable migratory behavior, Carr and Coleman [Carr, A. & Coleman, P. J. (1974) Nature (London) 249, 128-130] proposed a vicariant biogeographic scenario involving plate tectonics and natal homing. Under the Carr-Coleman hypothesis, the ancestors of Ascension Island green turtles nested on islands adjacent to South America in the late Cretaceous, soon after the opening of the equatorial Atlantic Ocean. Over the last 70 million years, these volcanic islands have been displaced from South America by sea-floor spreading, at a rate of about 2 cm/year. A population-specific instinct to migrate to Ascension Island is thus proposed to have evolved gradually over tens of millions of years of genetic isolation. Here we critically test the Carr-Coleman hypothesis by assaying genetic divergence among several widely separated green turtle rookeries. We have found fixed or nearly fixed mitochondrial DNA (mtDNA) restriction site differences between some Atlantic rookeries, suggesting a severe restriction on contemporary gene flow. Data are consistent with a natal homing hypothesis. However, an extremely close similarity in overall mtDNA sequences of surveyed Atlantic green turtles from three rookeries is incompatible with the Carr-Coleman scenario. The colonization of Ascension Island, or at least extensive gene flow into the population, has been evolutionarily recent.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA