Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 71
Filtrar
Más filtros

Base de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Food Funct ; 15(12): 6684-6691, 2024 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-38819217

RESUMEN

We previously demonstrated the beneficial effects of U.S.-grown sugar kelp (Saccharina latissima), a brown seaweed, on reducing serum triglycerides (TG) and total cholesterol (TC) and protecting against inflammation and fibrosis in the adipose tissue of diet-induced obesity mice. In this current study, we aimed to explore whether the dietary consumption of sugar kelp can prevent atherosclerosis using low-density lipoprotein receptor knockout (Ldlr KO) mice fed an atherogenic diet. Eight-week-old male Ldlr KO mice were fed either an atherogenic high-fat/high-cholesterol control (HF/HC) diet or a HF/HC diet supplemented with 6% (w/w) sugar kelp (HF/HC-SK) for 16 weeks. Consumption of sugar kelp significantly increased the body weight gain without altering fat mass and lean mass. Also, there were no significant differences in energy expenditure and physical activities between the groups. The two groups did not show significant differences in serum and hepatic TG and TC levels or the hepatic expression of genes involved in cholesterol and lipid metabolism. Although serum alanine aminotransferase (ALT) activity did not differ significantly between the two groups, there were significant increases in the expression of macrophage markers, including adhesion G protein-coupled receptor E1 and cluster of differentiation 68, as well as tumor necrosis factor alpha in the HF/HC-SK group compared to the HF/HC mice. The consumption of sugar kelp did not elicit a significant effect on the development of aortic lesions. Moreover, lipopolysaccharide-stimulated splenocytes isolated from HF/HC-SK-fed mice showed no significant changes in the mRNA levels of pro-inflammatory genes compared with those from the HF/HC mice. In summary, the consumption of dietary sugar kelp did not elicit anti-atherogenic and hepatoprotective effects in Ldlr KO mice.


Asunto(s)
Aterosclerosis , Ratones Noqueados , Receptores de LDL , Animales , Receptores de LDL/genética , Receptores de LDL/metabolismo , Ratones , Masculino , Aterosclerosis/prevención & control , Aterosclerosis/genética , Aterosclerosis/metabolismo , Triglicéridos/sangre , Triglicéridos/metabolismo , Kelp , Ratones Endogámicos C57BL , Dieta Alta en Grasa/efectos adversos , Hígado/metabolismo , Colesterol/sangre , Colesterol/metabolismo , Humanos , Metabolismo de los Lípidos , Algas Comestibles , Laminaria
2.
Mar Drugs ; 22(3)2024 Feb 26.
Artículo en Inglés | MEDLINE | ID: mdl-38535449

RESUMEN

The anti-inflammatory effect of the ethanol extract of Sargassum yezoense and its fractions were investigated in this study. The ethanol extract exhibited a strong anti-inflammatory effect on lipopolysaccharide-stimulated RAW 264.7 macrophages and effectively suppressed the M1 polarization of murine bone-marrow-derived macrophages stimulated by lipopolysaccharides and IFN-γ (interferon-gamma). Through a liquid-liquid extraction process, five fractions (n-hexane, chloroform, ethyl acetate, butanol, and aqueous) were acquired. Among these fractions, the chloroform fraction (SYCF) was found to contain the highest concentration of phenolic compounds, along with two primary meroterpenoids, sargahydroquinoic acid (SHQA) and sargachromenol (SCM), and exhibit significant antioxidant capacity. It also demonstrated a robust anti-inflammatory effect. A direct comparison was conducted to assess the relative contribution of SHQA and SCM to the anti-inflammatory properties of SYCF. The concentrations of SHQA and SCM tested were determined based on their relative abundance in SYCF. SHQA contributed to a significant portion of the anti-inflammatory property of SYCF, while SCM played a limited role. These findings not only highlight the potential of the chloroform-ethanol fractionation approach for concentrating meroterpenoids in S. yezoense but also demonstrate that SHQA and other bioactive compounds work additively or synergistically to produce the potent anti-inflammatory effect of SYCF.


Asunto(s)
Alquenos , Benzopiranos , Benzoquinonas , Sargassum , Animales , Ratones , Cloroformo , Etanol , Lipopolisacáridos
3.
Mov Disord ; 38(12): 2258-2268, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37990409

RESUMEN

BACKGROUND: Patients with Parkinson's disease (PD) have consistently demonstrated brain structure abnormalities, indicating the presence of shared etiological and pathological processes between PD and brain structures; however, the genetic relationship remains poorly understood. OBJECTIVE: The aim of this study was to investigate the extent of shared genetic architecture between PD and brain structural phenotypes (BSPs) and to identify shared genomic loci. METHODS: We used the summary statistics from genome-wide association studies to conduct MiXeR and conditional/conjunctional false discovery rate analyses to investigate the shared genetic signatures between PD and BSPs. Subsequent expression quantitative trait loci mapping in the human brain and enrichment analyses were also performed. RESULTS: MiXeR analysis identified genetic overlap between PD and various BSPs, including total cortical surface area, average cortical thickness, and specific brain volumetric structures. Further analysis using conditional false discovery rate (FDR) identified 21 novel PD risk loci on associations with BSPs at conditional FDR < 0.01, and the conjunctional FDR analysis demonstrated that PD shared several genomic loci with certain BSPs at conjunctional FDR < 0.05. Among the shared loci, 16 credible mapped genes showed high expression in the brain tissues and were primarily associated with immune function-related biological processes. CONCLUSIONS: We confirmed the polygenic overlap with mixed directions of allelic effects between PD and BSPs and identified multiple shared genomic loci and risk genes, which are likely related to immune-related biological processes. These findings provide insight into the complex genetic architecture associated with PD. © 2023 International Parkinson and Movement Disorder Society.


Asunto(s)
Estudio de Asociación del Genoma Completo , Enfermedad de Parkinson , Humanos , Enfermedad de Parkinson/diagnóstico por imagen , Enfermedad de Parkinson/genética , Predisposición Genética a la Enfermedad/genética , Fenotipo , Encéfalo/diagnóstico por imagen , Polimorfismo de Nucleótido Simple/genética , Sitios Genéticos
4.
Mar Drugs ; 21(10)2023 Oct 12.
Artículo en Inglés | MEDLINE | ID: mdl-37888467

RESUMEN

Macrophages play an important role in managing the onset and progression of chronic inflammatory diseases. The primary objective of this study is to explore the antioxidant potential and anti-inflammatory properties of Sargassum hemiphyllum ethanol extract (SHE) and its fraction. SHE and its five constituent fractions were assessed for overall antioxidant capabilities and inhibitory effects on LPS-induced inflammation by modulating macrophages polarization in both RAW 264.7 macrophages and bone-marrow-derived macrophages (BMDM). Among the organic solvent fractions of SHE, the ethyl acetate fraction displayed the highest total phenolic content and total antioxidant capacity. Notably, the n-hexane (Hex) fraction showed the most substantial suppression of LPS-induced tumor necrosis factor α secretion in BMDM among the five fractions of SHE. The SHE and Hex fraction significantly reduced the heightened expression of pro-inflammatory cytokines and inflammation-inducible enzymes induced by LPS in RAW 264.7 macrophages. In particular, the SHE and Hex fraction inhibited M1 macrophage polarization by reducing the mRNA expression of M1 macrophage markers in macrophages that were polarized toward the M1 phenotype. Furthermore, the SHE and Hex fraction attenuated the induction in nuclear factor E2-related factor 2 and its target genes, which was accompanied by an alteration in antioxidant gene expression in M1-polarized BMDM. The findings suggest that both SHE and its Hex fraction exhibit inhibitory effects on LPS-triggered inflammation and oxidative stress by modulating the polarization of M1 macrophages within macrophage populations.


Asunto(s)
Lipopolisacáridos , Sargassum , Humanos , Animales , Ratones , Antioxidantes/metabolismo , China , Etnicidad , Macrófagos , Células RAW 264.7 , Inflamación/inducido químicamente , Inflamación/tratamiento farmacológico , Inflamación/metabolismo
5.
Brain ; 146(8): 3373-3391, 2023 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-36825461

RESUMEN

GGC repeat expansion in the 5' untranslated region (UTR) of NOTCH2NLC is associated with a broad spectrum of neurological disorders, especially neuronal intranuclear inclusion disease (NIID). Studies have found that GGC repeat expansion in NOTCH2NLC induces the formation of polyglycine (polyG)-containing protein, which is involved in the formation of neuronal intranuclear inclusions. However, the mechanism of neurotoxicity induced by NOTCH2NLC GGC repeats is unclear. Here, we used NIID patient-specific induced pluripotent stem cell (iPSC)-derived 3D cerebral organoids (3DCOs) and cellular models to investigate the pathophysiological mechanisms of NOTCH2NLC GGC repeat expansion. IPSC-derived 3DCOs and cellular models showed the deposition of polyG-containing intranuclear inclusions. The NOTCH2NLC GGC repeats could induce the upregulation of autophagic flux, enhance integrated stress response and activate EIF2α phosphorylation. Bulk RNA sequencing for iPSC-derived neurons and single-cell RNA sequencing (scRNA-seq) for iPSC-derived 3DCOs revealed that NOTCH2NLC GGC repeats may be associated with dysfunctions in ribosome biogenesis and translation. Moreover, NOTCH2NLC GGC repeats could induce the NPM1 nucleoplasm translocation, increase nucleolar stress, impair ribosome biogenesis and induce ribosomal RNA sequestration, suggesting dysfunction of membraneless organelles in the NIID cellular model. Dysfunctions in ribosome biogenesis and phosphorylated EIF2α and the resulting increase in the formation of G3BP1-positive stress granules may together lead to whole-cell translational inhibition, which may eventually cause cell death. Interestingly, scRNA-seq revealed that NOTCH2NLC GGC repeats may be associated with a significantly decreased proportion of immature neurons while 3DCOs were developing. Together, our results underscore the value of patient-specific iPSC-derived 3DCOs in investigating the mechanisms of polyG diseases, especially those caused by repeats in human-specific genes.


Asunto(s)
ADN Helicasas , ARN Helicasas , Humanos , Proteínas de Unión a Poli-ADP-Ribosa , Proteínas con Motivos de Reconocimiento de ARN , Regiones no Traducidas 5' , Cuerpos de Inclusión Intranucleares , Ribosomas , Expansión de Repetición de Trinucleótido/genética
6.
Mil Med Res ; 9(1): 65, 2022 11 19.
Artículo en Inglés | MEDLINE | ID: mdl-36401295

RESUMEN

Bone, cartilage, and soft tissue regeneration is a complex spatiotemporal process recruiting a variety of cell types, whose activity and interplay must be precisely mediated for effective healing post-injury. Although extensive strides have been made in the understanding of the immune microenvironment processes governing bone, cartilage, and soft tissue regeneration, effective clinical translation of these mechanisms remains a challenge. Regulation of the immune microenvironment is increasingly becoming a favorable target for bone, cartilage, and soft tissue regeneration; therefore, an in-depth understanding of the communication between immune cells and functional tissue cells would be valuable. Herein, we review the regulatory role of the immune microenvironment in the promotion and maintenance of stem cell states in the context of bone, cartilage, and soft tissue repair and regeneration. We discuss the roles of various immune cell subsets in bone, cartilage, and soft tissue repair and regeneration processes and introduce novel strategies, for example, biomaterial-targeting of immune cell activity, aimed at regulating healing. Understanding the mechanisms of the crosstalk between the immune microenvironment and regeneration pathways may shed light on new therapeutic opportunities for enhancing bone, cartilage, and soft tissue regeneration through regulation of the immune microenvironment.


Asunto(s)
Huesos , Cartílago , Humanos , Cicatrización de Heridas
8.
Nutrients ; 14(11)2022 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-35684079

RESUMEN

Fucoxanthin (FCX) is a xanthophyll carotenoid present in brown seaweed. The goal of this study was to examine whether FCX supplementation could attenuate obesity-associated metabolic abnormalities, fibrosis, and inflammation in two diet-induced obesity (DIO) mouse models. C57BL/6J mice were fed either a high-fat/high-sucrose/high-cholesterol (HFC) diet or a high-fat/high-sucrose (HFS) diet. The former induces more severe liver injury than the latter model. In the first study, male C57BL/6J mice were fed an HFC diet, or an HFC diet containing 0.015% or 0.03% (w/w) FCX powder for 12 weeks to develop obesity-induced nonalcoholic steatohepatitis (NASH). In the second study, mice were fed an HFS diet or an HFS diet containing 0.01% FCX powder for 8 weeks. FCX did not change body weight gain and serum lipid profiles compared to the HFC or HFS controls. No significant differences were present in liver triglyceride and total cholesterol, hepatic fat accumulation, and serum alanine aminotransferase levels between control and FCX-fed mice regardless of whether they were on an HFC or HFS diet. FCX did not mitigate mRNA abundance of genes involved in lipid synthesis, cholesterol metabolism, inflammation, and fibrosis in the liver and white adipose tissue, while hepatic fatty acid ß-oxidation genes were significantly elevated by FCX in both HFC and HFS feeding studies. Additionally, in the soleus muscle, FCX supplementation significantly elevated genes that regulate mitochondrial biogenesis and fatty acid ß-oxidation, concomitantly increasing mitochondrial DNA copy number, compared with HFC. In summary, FCX supplementation had minor effects on hepatic and white adipose inflammation and fibrosis in two different DIO mouse models.


Asunto(s)
Hiperlipidemias , Enfermedad del Hígado Graso no Alcohólico , Animales , Colesterol/metabolismo , Dieta Alta en Grasa/efectos adversos , Modelos Animales de Enfermedad , Ácidos Grasos/metabolismo , Fibrosis , Hiperlipidemias/metabolismo , Inflamación/metabolismo , Lípidos , Hígado/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Enfermedad del Hígado Graso no Alcohólico/etiología , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Enfermedad del Hígado Graso no Alcohólico/prevención & control , Obesidad/etiología , Obesidad/metabolismo , Obesidad/prevención & control , Polvos , Sacarosa/farmacología , Xantófilas/metabolismo , Xantófilas/farmacología
9.
J Nutr Biochem ; 107: 109058, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35643283

RESUMEN

Nicotinamide riboside (NR) is a nicotinamide adenine dinucleotide (NAD+) precursor. We previously reported that NR supplementation prevented the development of liver fibrosis in male mice. However, whether NR exerts a similar effect in females is unknown. Therefore, we determined whether NR supplementation can prevent obesity-induced inflammation and fibrosis in the liver and white adipose tissue (WAT) by providing NAD+ in obese female mice. Female C57BL/6J mice at the age of 8 weeks (young) and 16 weeks (old) were fed a high-fat/high-sucrose/high-cholesterol diet (HF) or HF diet supplemented with NR at 400 mg/kg/d for 20 weeks. While NR had minor effects in young female mice, it significantly reduced body weight gain, fat mass, glucose intolerance, and serum cholesterol levels compared to the HF group in old females. Hepatic NAD+ level tended toward an increase in the NR group (P=.054), but NR did not attenuate serum alanine aminotransferase levels, steatosis, and liver fibrosis in old female mice. However, NR decreased weight and adipocyte size in gonadal WAT (gWAT) of old females. NR also reduced the number of crown-like structures and the expression of inflammatory genes, along with decreases in fibrogenic gene expression and collagen accumulation in gWAT compared with the HF group. Also, old mice fed NR showed increased metabolic rates, physical activity, and energy expenditure compared with the HF. Thus, our results indicated that NR supplementation exerted an anti-obesity effect and prevented the development of inflammation and fibrosis in the WAT of old, but not young, female mice with diet-induced obesity.


Asunto(s)
Tejido Adiposo Blanco , NAD , Tejido Adiposo Blanco/metabolismo , Animales , Dieta Alta en Grasa , Suplementos Dietéticos , Femenino , Inflamación/metabolismo , Inflamación/prevención & control , Hígado/metabolismo , Cirrosis Hepática/etiología , Cirrosis Hepática/metabolismo , Cirrosis Hepática/prevención & control , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Obesos , NAD/metabolismo , Niacinamida/análogos & derivados , Obesidad/etiología , Obesidad/prevención & control , Compuestos de Piridinio
10.
Nutrients ; 14(9)2022 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-35565869

RESUMEN

Hepatic stellate cells (HSC) play a major role in developing liver fibrosis. Upon activation during liver injury, activated HSC (aHSC) increase cell proliferation, fibrogenesis, contractility, chemotaxis, and cytokine release. We previously showed that aHSC have increased mitochondrial respiration but decreased glycolysis compared to quiescent HSC (qHSC). We also demonstrated that fucoxanthin (FCX), a xanthophyll carotenoid, has an anti-fibrogenic effect in HSC. The objective of this study was to investigate whether FCX attenuates metabolic reprogramming occurring during HSC activation. Mouse primary HSC were activated in the presence or absence of FCX for seven days. aHSC displayed significantly decreased glycolysis and increased mitochondrial respiration compared to qHSC, which was ameliorated by FCX present during activation. In addition, FCX partially attenuated the changes in the expression of genes involved in glycolysis and mitochondrial respiration, including hexokinase 1 (Hk1), Hk2, peroxisome proliferator-activated receptor γ coactivator 1ß, and pyruvate dehydrogenase kinase 3. Our data suggest that FCX may prevent HSC activation by modulating the expression of genes crucial for metabolic reprogramming in HSC.


Asunto(s)
Células Estrelladas Hepáticas , Xantófilas , Animales , Metabolismo Energético , Células Estrelladas Hepáticas/metabolismo , Hígado/metabolismo , Cirrosis Hepática/tratamiento farmacológico , Cirrosis Hepática/metabolismo , Cirrosis Hepática/prevención & control , Ratones , Xantófilas/metabolismo , Xantófilas/farmacología
11.
Nutrients ; 14(5)2022 Feb 24.
Artículo en Inglés | MEDLINE | ID: mdl-35267937

RESUMEN

We previously demonstrated that astaxanthin (ASTX), a xanthophyll carotenoid, has an antifibrogenic effect in hepatic stellate cells (HSC), primarily responsible for the accumulation of extracellular matrix protein during the development of liver fibrosis. Studies have shown that microRNAs (miRNAs) are involved in HSC activation. Therefore, we analyzed the expression of 84 miRNAs using miRNA arrays in primary mouse quiescent HSC (qHSC) and activated HSC (aHSC) treated with/without ASTX during their activation. Compared with qHSC, the expression of 14 miRNAs and 23 miRNAs was increased and decreased by more than 2-fold, respectively, in aHSC. Among the 14 miRNAs increased in aHSC, the expression of miR-192-5p, miR-382-5p, and miR-874-3p was reduced by ASTX. In addition, ASTX increased the expression of miR-19a-3p, miR-19b-3p, and miR-101a-3p among 23 miRNAs decreased in aHSC. Moreover, we confirmed miR-382-5p expression was ~15-fold higher in aHSC than qHSC, and ASTX markedly inhibited the induction measured by quantitative real-time PCR. We identified that the expression of Baz1a and Zfp462 from the predicted miR-382-5p target genes was significantly reduced in aHSC while increased by ASTX treatment similar to the levels in qHSC. The roles of Baz1a and Zfp462 in HSC activation and the antifibrogenic effect of ASTX need to be further investigated.


Asunto(s)
Células Estrelladas Hepáticas , MicroARNs , Animales , Proteínas de Unión al ADN/metabolismo , Células Estrelladas Hepáticas/metabolismo , Cirrosis Hepática/tratamiento farmacológico , Cirrosis Hepática/genética , Cirrosis Hepática/prevención & control , Ratones , MicroARNs/genética , MicroARNs/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Xantófilas/metabolismo , Xantófilas/farmacología
12.
J Lipid Res ; 63(4): 100192, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35278409

RESUMEN

Oral and gut Bacteroidetes produce unique classes of serine-glycine lipodipeptides and glycine aminolipids that signal through host Toll-like receptor 2. These glycine lipids have also been detected in human arteries, but their effects on atherosclerosis are unknown. Here, we sought to investigate the bioactivity of bacterial glycine lipids in mouse models of atherosclerosis. Lipid 654 (L654), a serine-glycine lipodipeptide species, was first tested in a high-fat diet (HFD)-fed Ldlr-/- model of atherosclerosis. Intraperitoneal administration of L654 over 7 weeks to HFD-fed Ldlr-/- mice resulted in hypocholesterolemic effects and significantly attenuated the progression of atherosclerosis. We found that L654 also reduced liver inflammatory and extracellular matrix gene expression, which may be related to inhibition of macrophage activation as demonstrated in vivo by lower major histocompatibility complex class II gene expression and confirmed in cell experiments. In addition, L654 and other bacterial glycine lipids in feces, liver, and serum were markedly reduced alongside changes in Bacteroidetes relative abundance in HFD-fed mice. Finally, we tested the bioactivities of L654 and related lipid 567 in chow-fed Apoe-/- mice, which displayed much higher fecal glycine lipids relative to HFD-fed Ldlr-/- mice. Administration of L654 or lipid 567 for 7 weeks to these mice reduced the liver injury marker alanine aminotransferase, but other effects seen in Ldlr-/- were not observed. Therefore, we conclude that conditions in which gut microbiome-derived glycine lipids are lost, such as HFD, may exacerbate the development of atherosclerosis and liver injury, whereas correction of such depletion may protect from these disorders.


Asunto(s)
Aterosclerosis , Microbioma Gastrointestinal , Animales , Aterosclerosis/genética , Bacterias , Bacteroidetes , Dieta Alta en Grasa/efectos adversos , Glicina/farmacología , Hígado , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Serina
13.
J Nutr Biochem ; 99: 108852, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34525389

RESUMEN

This study aimed to develop a well-characterized mouse model of alcoholic hepatitis (AH) regression. Male C57BL/6J mice were fed a Lieber-DeCarli (LD) control diet or LD containing 5% ethanol for ten days followed by one binge, which is the chronic-binge model of AH developed by the National Institute on Alcohol Abuse and Alcoholism. To determine AH regression, mice previously exposed to ethanol were put on LD control diet and metabolic and inflammatory features were monitored weekly for three weeks. Serum alcohol, total cholesterol, and alanine transaminase levels were increased in ethanol-fed mice, which declined to those of no ethanol controls within one and three weeks after ethanol withdrawal, respectively. Serum malondialdehyde was increased with ethanol feeding, but it was restored to no ethanol control levels within one week. Ethanol-induced changes in the hepatic expression of genes involved in lipogenesis, fatty acid oxidation, ethanol metabolism, and antioxidant response were restored to those of no ethanol controls after 3 weeks of ethanol withdrawal. Also, ethanol-induced hepatic inflammation was gradually decreased during the 3 weeks of ethanol withdrawal. Hepatic nicotinamide adenine dinucleotide (NAD+) levels and the expression of enzymes involved in the NAD+ salvage pathway were decreased by ethanol feeding, which was mitigated after ethanol withdrawal. Ethanol significantly lowered hepatic sirtuin 1 expression, but its levels were restored with ethanol cessation. This study established a mouse model of AH regression, which can be used as a preclinical model to study the potential of dietary bioactives or therapeutic agents on AH regression.


Asunto(s)
Alcoholismo/complicaciones , Etanol/efectos adversos , Hígado Graso/metabolismo , Hepatitis Alcohólica/metabolismo , NAD/metabolismo , Estrés Oxidativo , Animales , Modelos Animales de Enfermedad , Progresión de la Enfermedad , Hígado Graso/etiología , Hígado Graso/genética , Hígado Graso/inmunología , Hepatitis Alcohólica/etiología , Hepatitis Alcohólica/genética , Hepatitis Alcohólica/inmunología , Humanos , Hígado/inmunología , Hígado/metabolismo , Masculino , Malondialdehído/metabolismo , Ratones , Ratones Endogámicos C57BL , Sirtuina 1/genética , Sirtuina 1/metabolismo
15.
ACS Appl Mater Interfaces ; 13(38): 45335-45345, 2021 Sep 29.
Artículo en Inglés | MEDLINE | ID: mdl-34543000

RESUMEN

Immunotherapy is currently an important adjuvant therapy for malignant tumors besides surgical treatment. However, the heterogeneity and low immunogenicity of the tumor are two main challenges of the immunotherapy. Here, we have constructed a nanoplatform (CP@mRBC-PpIX) to realize reversion of the tumor acidosis and hypoxia through alkali and oxygen generation triggered by tumor acidosis. By targeting tumor universal features other than endogenous biomarkers, it was found that CP@mRBC-PpIX could polarize tumor-associated macrophages to anti-tumor M1 phenotype macrophages to enhance tumor immune response. Furthermore, under regional light irradiation, the reactive oxygen species produced by photosensitizers located in CP@mRBC-PpIX could increase the immunogenicity of tumors, so that tumor changes from an immunosuppressive "cold tumor" to an immunogenic "hot tumor," thereby increasing the infiltration and response of T cells, further amplifying the effect of immunotherapy. This strategy circumvented the problem of tumor heterogeneity to realize a kind of broad-spectrum immunotherapy, which could effectively prevent tumor metastasis and recurrence.


Asunto(s)
Antineoplásicos/uso terapéutico , Membrana Eritrocítica/química , Nanopartículas del Metal/uso terapéutico , Neoplasias/tratamiento farmacológico , Protoporfirinas/uso terapéutico , Microambiente Tumoral/efectos de los fármacos , Animales , Antineoplásicos/química , Antineoplásicos/efectos de la radiación , Línea Celular Tumoral , Cobre/química , Cobre/uso terapéutico , Humanos , Inmunidad/efectos de los fármacos , Inmunoterapia , Luz , Activación de Linfocitos/efectos de los fármacos , Macrófagos/efectos de los fármacos , Nanopartículas del Metal/química , Nanopartículas del Metal/efectos de la radiación , Ratones Endogámicos C57BL , Neoplasias/inmunología , Neoplasias/metabolismo , Peróxidos/química , Peróxidos/uso terapéutico , Fármacos Fotosensibilizantes/química , Fármacos Fotosensibilizantes/efectos de la radiación , Fármacos Fotosensibilizantes/uso terapéutico , Protoporfirinas/química , Protoporfirinas/efectos de la radiación , Especies Reactivas de Oxígeno/metabolismo , Linfocitos T/efectos de los fármacos
16.
J Pathol ; 255(3): 319-329, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34374436

RESUMEN

Epigenetic regulation in macrophages plays a crucial role in the inflammatory response of cells. We investigated the role of macrophage histone deacetylase 4 (HDAC4) in diet-induced obesity and non-alcoholic steatohepatitis using macrophage-specific Hdac4 knockout mice (Hdac4MKO ). Hdac4 floxed control (Hdac4fl/fl ) and Hdac4MKO mice were fed a regular chow diet or an obesogenic high-fat/high-sucrose/high-cholesterol (HF/HS/HC) diet for 12 weeks. The loss of macrophage Hdac4, compared with Hdac4fl/fl control, aggravated the diet-induced inflammation in the liver and white adipose tissue only in male mice. Splenic monocytes isolated from male mice fed the HF/HS/HC diet showed increased lipopolysaccharide (LPS) sensitivity and decreased Ly6C-/Ly6C+ ratios in male Hdac4MKO mice, but not in females. Bone marrow-derived macrophages (BMMs) from male Hdac4MKO mice had a lesser efferocytotic capacity but higher proinflammatory gene expression upon LPS stimulation than male Hdac4fl/fl mice. However, female Hdac4MKO BMMs exhibited the opposite responses. The induction of estrogen receptor α (ERα, Esr1) expression by LPS was less in male but more in female Hdac4MKO BMMs than Hdac4fl/fl BMMs. Moreover, overexpression of human HDAC4 decreased basal expression of Esr1 and abolished its induction by LPS. Inhibition of ERα increased Hdac4 with induction of inflammatory genes, whereas activation of ERα decreased Hdac4 with reduction of inflammatory genes in male and female Hdac4fl/fl BMMs treated with LPS. However, regardless of the inhibition or activation of ERα, proinflammatory genes were induced by LPS more in male Hdac4MKO BMMs than Hdac4fl/fl cells, whereas cells in females showed opposite responses. In conclusion, this study suggests that the lack of macrophage Hdac4 aggravates hepatic and white adipose inflammation in male mice with diet-induced obesity and non-alcoholic steatohepatitis, and not in female mice. HDAC4 and ERα appear to counteract each other, but ERα may not be a major player in sex-dependent inflammatory responses in macrophages deficient in HDAC4. © 2021 The Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.


Asunto(s)
Histona Desacetilasas/metabolismo , Macrófagos/metabolismo , Enfermedad del Hígado Graso no Alcohólico/patología , Caracteres Sexuales , Tejido Adiposo/patología , Animales , Dieta Alta en Grasa/efectos adversos , Femenino , Inflamación/patología , Hígado/patología , Masculino , Ratones , Ratones Noqueados
17.
Nutrients ; 13(6)2021 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-34072678

RESUMEN

The incidence of metabolic and chronic diseases including cancer, obesity, inflammation-related diseases sharply increased in the 21st century. Major underlying causes for these diseases are inflammation and oxidative stress. Accordingly, natural products and their bioactive components are obvious therapeutic agents for these diseases, given their antioxidant and anti-inflammatory properties. Research in this area has been significantly expanded to include chemical identification of these compounds using advanced analytical techniques, determining their mechanism of action, food fortification and supplement development, and enhancing their bioavailability and bioactivity using nanotechnology. These timely topics were discussed at the 20th Frontier Scientists Workshop sponsored by the Korean Academy of Science and Technology, held at the University of Hawaii at Manoa on 23 November 2019. Scientists from South Korea and the U.S. shared their recent research under the overarching theme of Bioactive Compounds, Nanoparticles, and Disease Prevention. This review summarizes presentations at the workshop to provide current knowledge of the role of natural products in the prevention and treatment of metabolic diseases.


Asunto(s)
Antiinflamatorios , Antioxidantes , Productos Biológicos , Enfermedades Metabólicas , Animales , Suplementos Dietéticos , Humanos , Enfermedades Metabólicas/tratamiento farmacológico , Enfermedades Metabólicas/metabolismo , Ratones , Nanopartículas , Obesidad/tratamiento farmacológico , Obesidad/metabolismo , Estrés Oxidativo/efectos de los fármacos , Ratas
18.
Front Physiol ; 12: 665268, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34177616

RESUMEN

Leuciscus waleckii is a freshwater fish that is known to inhabit the Dali Nor Lake, Inner Mongolia, China. The water in this lake has an HCO3 -/CO3 2- concentration of 54 mM (pH 9.6) and a salinity of 0.6‰. The physiological mechanisms that allow this fish to tolerate these saline/alkaline conditions have yet to be elucidated. Transcriptional component analysis has shown that the expression levels of a large number of genes involved in the pathways responsible for osmo-ionoregulation and arachidonic acid metabolism pathway expression change significantly (p < 0.05) during the regulation of acid-base balance under high alkaline stress. In this study, we investigated the role of long non-coding RNAs (lncRNAs) during adaptation to high alkaline conditions. Fish were challenged to an NaHCO3-adjusted alkalinity of 0 mM, 30 mM (pH 9.44 ± 0.08), and 50 mM (pH 9.55 ± 0.06) for 20 days in the laboratory. Gill and kidney tissues were then collected for high-throughput sequencing assays. A total of 159 million clean reads were obtained by high-throughput sequencing, and 41,248 lncRNA transcripts were identified. Of these, the mean number of exons and the mean length of the lncRNA transcripts were 4.8 and 2,079 bp, respectively. Based on the analysis of differential lncRNA transcript expression, a total of 5,244 and 6,571 lncRNA transcripts were found to be differentially expressed in the gills and kidneys, respectively. Results derived from Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis of the coding genes were correlated with the lncRNA expression profiles. GO analysis showed that many lncRNAs were enriched in the following processes: "transporter activity," "response to stimulus," and "binding." KEGG analysis further revealed that metabolic pathways were significantly enriched. A random selection of 16 lncRNA transcripts was tested by RT-qPCR; these results were consistent with our sequencing results. We found that a large number of genes, with the same expression profiles as those with differentially expressed lncRNAs, were associated with the regulation of acid-base balance, ion transport, and the excretion of ammonia and nitrogen. Collectively, our data indicate that lncRNA-regulated gene expression plays an important role in the process of adaptation to high alkaline conditions in L. waleckii.

19.
J Nutr Biochem ; 97: 108799, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34119629

RESUMEN

Nonalcoholic steatohepatitis (NASH), closely associated with obesity, is a health concern worldwide. We investigated whether the consumption of U.S.-grown sugar kelp (Saccharina latissima), an edible brown alga, can prevent obesity-associated metabolic disturbances and NASH in a mouse model of diet-induced NASH. Male C57BL/6J mice were fed a low-fat diet, a high-fat/high-sucrose/high-cholesterol diet (HF), or a HF diet containing sugar kelp (HF-Kelp) for 14 weeks. HF-Kelp group showed lower body weight with increased O2 consumption, CO2 production, physical activity, and energy expenditure compared with the HF. In the liver, there were significant decreases in weight, triglycerides, total cholesterol, and steatosis with HF-Kelp. The HF-Kelp group decreased hepatic expression of a macrophage marker adhesion G protein-coupled receptor E1 (Adgre1) and an M1 macrophage marker integrin alpha x (Itgax). HF-Kelp group also exhibited decreased liver fibrosis, as evidenced by less expression of fibrogenic genes and collagen accumulation than those of HF group. In epididymal white adipose tissue (eWAT), HF-Kelp group exhibited decreases in eWAT weight and adipocyte size compared with those of the HF. HF-Kelp group showed decreased expression of collagen type VI alpha 1 chain, Adgre1, Itgax, and tumor necrosis factor α in eWAT. We demonstrated, for the first time, that the consumption of U.S-grown sugar kelp prevented the development of obesity and its associated metabolic disturbances, steatosis, inflammation, and fibrosis in the liver and eWAT of a diet-induced NASH mouse model.


Asunto(s)
Dieta , Hepatitis/prevención & control , Kelp , Cirrosis Hepática/prevención & control , Enfermedad del Hígado Graso no Alcohólico/prevención & control , Tejido Adiposo Blanco/citología , Tejido Adiposo Blanco/metabolismo , Animales , Dieta Alta en Grasa , Modelos Animales de Enfermedad , Metabolismo Energético , Hepatitis/etiología , Metabolismo de los Lípidos , Hígado/metabolismo , Cirrosis Hepática/etiología , Masculino , Ratones , Ratones Endogámicos C57BL , Obesidad/prevención & control , Consumo de Oxígeno , Triglicéridos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA