Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros

Base de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
2.
Curr Biol ; 2024 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-38944034

RESUMEN

Rapid eye movement (REM) sleep has been hypothesized to promote emotional resilience, but any neuronal circuits mediating this have not been identified. We find that in mice, somatostatin (Som) neurons in the entopeduncular nucleus (EPSom)/internal globus pallidus are predominantly active during REM sleep. This unique REM activity is both necessary and sufficient for maintaining normal REM sleep. Inhibiting or exciting EPSom neurons reduced or increased REM sleep duration, respectively. Activation of the sole downstream target of EPSom neurons, Vglut2 cells in the lateral habenula (LHb), increased sleep via the ventral tegmental area (VTA). A simple chemogenetic scheme to periodically inhibit the LHb over 4 days selectively removed a significant amount of cumulative REM sleep. Chronic, but not acute, REM reduction correlated with mice becoming anxious and more sensitive to aversive stimuli. Therefore, we suggest that cumulative REM sleep, in part generated by the EP → LHb → VTA circuit identified here, could contribute to stabilizing reactions to habitual aversive stimuli.

3.
Nat Neurosci ; 27(6): 1046-1050, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38741022

RESUMEN

It has been suggested that the function of sleep is to actively clear metabolites and toxins from the brain. Enhanced clearance is also said to occur during anesthesia. Here, we measure clearance and movement of fluorescent molecules in the brains of male mice and show that movement is, in fact, independent of sleep and wake or anesthesia. Moreover, we show that brain clearance is markedly reduced, not increased, during sleep and anesthesia.


Asunto(s)
Anestesia , Encéfalo , Sueño , Animales , Masculino , Encéfalo/metabolismo , Encéfalo/fisiología , Sueño/fisiología , Ratones , Ratones Endogámicos C57BL , Vigilia/fisiología
4.
Nat Neurosci ; 26(10): 1805-1819, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37735497

RESUMEN

The prefrontal cortex (PFC) enables mammals to respond to situations, including internal states, with appropriate actions. One such internal state could be 'tiredness'. Here, using activity tagging in the mouse PFC, we identified particularly excitable, fast-spiking, somatostatin-expressing, γ-aminobutyric acid (GABA) (PFCSst-GABA) cells that responded to sleep deprivation. These cells projected to the lateral preoptic (LPO) hypothalamus and the lateral hypothalamus (LH). Stimulating PFCSst-GABA terminals in the LPO hypothalamus caused sleep-preparatory behavior (nesting, elevated theta power and elevated temperature), and stimulating PFCSst-GABA terminals in the LH mimicked recovery sleep (non-rapid eye-movement sleep with higher delta power and lower body temperature). PFCSst-GABA terminals had enhanced activity during nesting and sleep, inducing inhibitory postsynaptic currents on diverse cells in the LPO hypothalamus and the LH. The PFC also might feature in deciding sleep location in the absence of excessive fatigue. These findings suggest that the PFC instructs the hypothalamus to ensure that optimal sleep takes place in a suitable place.


Asunto(s)
Área Hipotalámica Lateral , Neuronas , Ratones , Animales , Área Hipotalámica Lateral/metabolismo , Neuronas/fisiología , Somatostatina/metabolismo , Sueño/fisiología , Hipotálamo/fisiología , Ácido gamma-Aminobutírico , Corteza Prefrontal/fisiología , Mamíferos/metabolismo
5.
Curr Biol ; 29(19): 3315-3322.e3, 2019 10 07.
Artículo en Inglés | MEDLINE | ID: mdl-31543455

RESUMEN

Our urge to sleep increases with time spent awake, until sleep becomes inescapable. The sleep following sleep deprivation is longer and deeper, with an increased power of delta (0.5-4 Hz) oscillations, a phenomenon termed sleep homeostasis [1-4]. Although widely expressed genes regulate sleep homeostasis [1, 4-10] and the process is tracked by somnogens and phosphorylation [1, 3, 7, 11-14], at the circuit level sleep homeostasis has remained mysterious. Previously, we found that sedation induced with α2-adrenergic agonists (e.g., dexmedetomidine) and sleep homeostasis both depend on the preoptic (PO) hypothalamus [15, 16]. Dexmedetomidine, increasingly used for long-term sedation in intensive care units [17], induces a non-rapid-eye-movement (NREM)-like sleep but with undesirable hypothermia [18, 19]. Within the PO, various neuronal subtypes (e.g., GABA/galanin and glutamate/NOS1) induce NREM sleep [20-22] and concomitant body cooling [21, 22]. This could be because NREM sleep's restorative effects depend on lower body temperature [23, 24]. Here, we show that mice with lesioned PO galanin neurons have reduced sleep homeostasis: in the recovery sleep following sleep deprivation there is a diminished increase in delta power, and the mice catch up little on lost sleep. Furthermore, dexmedetomidine cannot induce high-power delta oscillations or sustained hypothermia. Some hours after dexmedetomidine administration to wild-type mice there is a rebound in delta power when they enter normal NREM sleep, reminiscent of emergence from torpor. This delta rebound is reduced in mice lacking PO galanin neurons. Thus, sleep homeostasis and dexmedetomidine-induced sedation require PO galanin neurons and likely share common mechanisms.


Asunto(s)
Agonistas de Receptores Adrenérgicos alfa 2/farmacología , Dexmedetomidina/farmacología , Galanina/metabolismo , Hipnóticos y Sedantes/farmacología , Neuronas/fisiología , Privación de Sueño/metabolismo , Sueño/fisiología , Animales , Femenino , Homeostasis , Masculino , Ratones , Neuronas/efectos de los fármacos , Sueño/efectos de los fármacos
6.
Curr Biol ; 28(14): 2263-2273.e4, 2018 07 23.
Artículo en Inglés | MEDLINE | ID: mdl-30017485

RESUMEN

Mammals, including humans, prepare for sleep by nesting and/or curling up, creating microclimates of skin warmth. To address whether external warmth induces sleep through defined circuitry, we used c-Fos-dependent activity tagging, which captures populations of activated cells and allows them to be reactivated to test their physiological role. External warming tagged two principal groups of neurons in the median preoptic (MnPO)/medial preoptic (MPO) hypothalamic area. GABA neurons located mainly in MPO produced non-rapid eye movement (NREM) sleep but no body temperature decrease. Nitrergic-glutamatergic neurons in MnPO-MPO induced both body cooling and NREM sleep. This circuitry explains how skin warming induces sleep and why the maximal rate of core body cooling positively correlates with sleep onset. Thus, the pathways that promote NREM sleep, reduced energy expenditure, and body cooling are inextricably linked, commanded by the same neurons. This implies that one function of NREM sleep is to lower brain temperature and/or conserve energy.


Asunto(s)
Regulación de la Temperatura Corporal/fisiología , Neuronas/fisiología , Área Preóptica/fisiología , Sueño/fisiología , Adaptación Fisiológica , Animales , Frío , Calor , Masculino , Ratones , Ratones Endogámicos C57BL , Proteínas Proto-Oncogénicas c-fos/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA