RESUMEN
Electrides have emerged as promising materials with exotic properties due to the presence of localized electrons detached from all atoms. Despite the continuous discovery of many new electrides, most of them are based on atypical compositions, and their applications require an inert surface structure to passivate reactive excess electrons. Here, we demonstrate a different route to attain tunable electrides. We first report that monolayer transition metal dichalcogenides (TMDCs) exhibit weak electride characteristics, which is the remainder of the electride feature of the transition metal sublattice. By introducing chalcogen vacancies, the enhanced electride characteristics are comparable to those of known electrides. Since the precise tailoring of the chalcogen vacancy concentration has been achieved experimentally, we proposed that TMDCs can be used to build electrides with controllable intensities. Furthermore, we demonstrate that the electride states at the chalcogen vacancy of monolayer TMDCs will play an important role in catalyzing hydrogen evolution reactions.
RESUMEN
The discovery of covalent H3S and clathrate structure LaH10 with excellent superconducting critical temperatures at high pressures has facilitated a multitude of research on compressed hydrides. However, their superconducting pressures are too high (generally above 150 GPa), thereby hindering their application. In addition, making room-temperature superconductivity close to ambient pressure in hydrogen-based superconductors is challenging. In this work, we calculated the chemically "pre-compressed" Be-H by heavy metals Th and Ce to stabilize the superconducting phase near ambient pressure. An unprecedented ThBeH8 (CeBeH8) with a "fluorite-type" structure was predicted to be thermodynamically stable above 69 GPa (76 GPa), yielding a T c of 113 K (28 K) decompressed to 7 GPa (13 GPa) by solving the anisotropic Migdal-Eliashberg equations. Be-H vibrations play a vital role in electron-phonon coupling and structural stability of these ternary hydrides. Our results will guide further experiments toward synthesizing ternary hydride superconductors at mild pressures.
RESUMEN
Using first-principles calculations and crystal structure search methods, we found that many covalently bonded molecules such as H2, N2, CO2, NH3, H2O and CH4 may react with NaCl, a prototype ionic solid, and form stable compounds under pressure while retaining their molecular structure. These molecules, despite whether they are homonuclear or heteronuclear, polar or non-polar, small or large, do not show strong chemical interactions with surrounding Na and Cl ions. In contrast, the most stable molecule among all examples, N2, is found to transform into cyclo-N5- anions while reacting with NaCl under high pressures. It provides a new route to synthesize pentazolates, which are promising green energy materials with high energy density. Our work demonstrates a unique and universal hybridization propensity of covalently bonded molecules and solid compounds under pressure. This surprising miscibility suggests possible mixing regions between the molecular and rock layers in the interiors of large planets.
RESUMEN
Control over the two-dimensional electron gas (2DEG) in AlGaN/GaN heterostructures is crucial for their practical applications in current semiconducting devices. However, the oxide surface structures inducing 2DEG are still ambiguous because oxide-stoichiometry (OS) matching structures possess occupied surface donor states at 1.0-1.8 eV below the conduction band minimum of bulk but are usually not available in energy than electron counting (EC) rule structures. In this work, a global optimization algorithm was introduced to explore the possible oxidation structures on GaN (0001) and AlN (0001) surfaces; the method was demonstrated to be available due to the fact that the reported oxidized structures were reproduced at each stoichiometry. Interestingly, the two similar oxide structures with close energy were found in each oxide-bilayer, which can be used to clarify the experimental observations of disordered surface oxide layers below 550 °C. Additionally, new stable oxidation structures with low surface energy were proposed. Interestingly, the new OS matching structures are proposed with remarkably lower energy than EC rule structures under cation-rich and oxygen-poor conditions, which is caused by the large formation enthalpy of Al2O3 and Ga2O3. Further electronic structure calculations demonstrate that the new OS structures possess highest occupied states above the half of the gap and are the origin of 2DEG in AlGaN/GaN heterostructures.
RESUMEN
External mechanical stress alters the nature of chemical bonds and triggers novel reactions, providing interesting synthetic protocols to supplement traditional solvent- or thermo-based chemical approaches. The mechanisms of mechanochemistry have been well studied in organic materials made of a carbon-centered polymeric framework and covalence force field. They convert stress into anisotropic strain which will engineer the length and strength of targeted chemical bonds. Here, we show that by compressing silver iodide in a diamond anvil cell, the external mechanical stress weakens the Ag-I ionic bonds and activate the global diffusion of super-ions. In contrast to conventional mechanochemistry, mechanical stress imposes unbiased influence on the ionicity of chemical bonds in this archetypal inorganic salt. Our combined synchrotron X-ray diffraction experiment and first-principles calculation demonstrate that upon the critical point of ionicity, the strong ionic Ag-I bonds break down, leading to the recovery of elemental solids from a decomposition reaction. Instead of densification, our results reveal the mechanism of an unexpected decomposition reaction through hydrostatic compression and suggest the sophisticated chemistry of simple inorganic compounds under extreme conditions.
RESUMEN
Most metals adopt simple structures such as body-centered cubic (BCC), face-centered cubic (FCC), and hexagonal close-packed (HCP) structures in specific groupings across the periodic table, and many undergo transitions to surprisingly complex structures on compression, not expected from conventional free-electron-based theories of metals. First-principles calculations have been able to reproduce many observed structures and transitions, but a unified, predictive theory that underlies this behavior is not yet in hand. Discovered by analyzing the electronic properties of metals in various lattices over a broad range of sizes and geometries, a remarkably simple theory shows that the stability of metal structures is governed by electrons occupying local interstitial orbitals and their strong chemical interactions. The theory provides a basis for understanding and predicting structures in solid compounds and alloys over a broad range of conditions.
RESUMEN
Two-dimensional (2D) electrides, characterized by excess interstitial anionic electron (IAE) in a crystalline 2D material, offer promising opportunities for the development of electrode materials, in particular in rechargeable metal-ion batteries applications. Although a few such potential electride materials have been reported, they generally show low metal-ion storage capacity, and the effect of IAE on the ion storage performance remains elusive so far. Here we report a novel 2D electride, [Sc3Si2]1+·1e-, with fascinating IAE-driven high alkali metal-ion storage capacity. In particular, its K-ion specific capacity can reach up to 1497 mA h g-1, higher than any previously reported 2D materials-based anodes in K-ion batteries (PIBs). The IAE in the [Sc3Si2]1+·1e- crystal accounts for such high capacity behavior, which can drift away and balance the charge on the metal-cation, playing a crucial role in stabilizing the metal-ion adsorption and enhancing multilayer-ions adsorption. This proposed IAE-driven storage mechanism provides an unprecedented avenue for the future design of high storage capacity electrode materials.
RESUMEN
All-nitrogen solids, if successfully synthesized, are ideal high-energy-density materials because they store a great amount of energy and produce only harmless N2 gas upon decomposition. Currently, the only method to obtain all-nitrogen solids is to apply high pressure to N2 crystals. However, products such as cg-N tend to decompose upon releasing the pressure. Compared to covalent solids, molecular crystals are more likely to remain stable during decompression because they can relax the strain by increasing the intermolecular distances. The challenge of such a route is to find a molecular crystal that can attain a favorable phase under elevated pressure. In this work, we show, by designing a novel N16 molecule (tripentazolylamine) and examining its crystal structures under a series of pressures, that the aromatic units and high molecular symmetry are the key factors to achieving an all-nitrogen molecular crystal. Density functional calculations and structural studies reveal that this new all-nitrogen molecular crystal exhibits a particularly slow enthalpy increase with pressure due to the highly efficient crystal packing of its highly symmetric molecules. Vibration mode calculations and molecular dynamics (MD) simulations show that N16 crystals are metastable at ambient pressure and could remain inactive up to 400 K. The initial reaction steps of the decomposition are calculated by following the pathway of the concerted excision of N2 from the N5 group as revealed by the MD simulations.
RESUMEN
Crown ethers could serve as hosts to selectively incorporate various guest atoms or molecules within the macrocycles. However, the high flexibility of crown ether molecules limits their applications in areas requiring a higher binding strength and selectivity. As an important graphene derivate, graphane, which is composed of entirely sp3 hybridized carbon atoms and possesses the characteristic of non-wrinkle in contrast to graphene, provides an ideal two-dimensional platform to rigidify crown ether molecules. In this work, using first principles calculations, we demonstrate that the embedment of various crown ethers with different cavity sizes in the graphane lattice are thermodynamically and kinetically stable. Compared with the corresponding crown ether molecules, the binding strength for alkali metal cations can be increased by up to â¼14 times, which may provide a good means in the field of alkali metal cation separation. Meanwhile, the electronic properties of graphane could be tuned in a range of 4.43-5.85 eV by controlling the densities of the crown ethers. These crown ether graphanes are also good candidates for the photolysis of water. Therefore, considering the easy synthesis and tunable crystal structures of graphane, we expect that our findings will trigger a new wave of research and applications of both crown ethers and graphane.
RESUMEN
All elements that form diatomic molecules, such as H_{2}, N_{2}, O_{2}, Cl_{2}, Br_{2}, and I_{2}, are destined to become atomic solids under sufficiently high pressure. However, as revealed by many experimental and theoretical studies, these elements show very different propensity and transition paths due to the balance of reduced volume, lone pair electrons, and interatomic bonds. The study of F under pressure can illuminate this intricate behavior since F, owing to its unique position on the periodic table, can be compared with H, with N and O, and also with other halogens. Nevertheless, F remains the only element whose solid structure evolution under pressure has not been thoroughly studied. Using a large-scale crystal structure search method based on first principles calculations, we find that, before reaching an atomic phase, F solid transforms first into a structure consisting of F_{2} molecules and F polymer chains and then into a structure consisting of F polymer chains and F atoms, a distinctive evolution with pressure that has not been seen in any other elements. Both intermediate structures are found to be metallic and become superconducting, a result that adds F to the elemental superconductors.
RESUMEN
Studies of molecular mixtures containing hydrogen sulfide (H2S) could open up new routes towards hydrogen-rich high-temperature superconductors under pressure. H2S and ammonia (NH3) form hydrogen-bonded molecular mixtures at ambient conditions, but their phase behavior and propensity towards mixing under pressure is not well understood. Here, we show stable phases in the H2S-NH3 system under extreme pressure conditions to 4 Mbar from first-principles crystal structure prediction methods. We identify four stable compositions, two of which, (H2S) (NH3) and (H2S) (NH3)4, are stable in a sequence of structures to the Mbar regime. A re-entrant stabilization of (H2S) (NH3)4 above 300 GPa is driven by a marked reversal of sulfur-hydrogen chemistry. Several stable phases exhibit metallic character. Electron-phonon coupling calculations predict superconducting temperatures up to 50 K, in the Cmma phase of (H2S) (NH3) at 150 GPa. The present findings shed light on how sulfur hydride bonding and superconductivity are affected in molecular mixtures. They also suggest a reservoir for hydrogen sulfide in the upper mantle regions of icy planets in a potentially metallic mixture, which could have implications for their magnetic field formation.
RESUMEN
In this review, we summarize the rapid progress that has been made in the study of noble gas chemistry in solid compounds under high pressure. Thanks to the recent development of first-principles crystal structure search methods, many new noble gas compounds have been predicted and some have been synthesized. Strikingly, almost all types of chemical roles and interactions are found or predicted in these high-pressure noble gas compounds, ranging from cationic and anionic noble gases to covalent bonds between noble gas atoms, and to hydrogen bond-like noble gas bonds. Besides, the recently discovered He insertion reactions reveal a unique chemical force that displays no local chemical bonding, providing evidence that research into noble gas reactions can advance the frontier of chemistry at the very basic level.
RESUMEN
An enduring geological mystery concerns the missing xenon problem, referring to the abnormally low concentration of xenon compared to other noble gases in Earth's atmosphere. Identifying mantle minerals that can capture and stabilize xenon has been a great challenge in materials physics and xenon chemistry. Here, using an advanced crystal structure search algorithm in conjunction with first-principles calculations we find reactions of xenon with recently discovered iron peroxide FeO2, forming robust xenon-iron oxides Xe2FeO2 and XeFe3O6 with significant Xe-O bonding in a wide range of pressure-temperature conditions corresponding to vast regions in Earth's lower mantle. Calculated mass density and sound velocities validate Xe-Fe oxides as viable lower-mantle constituents. Meanwhile, Fe oxides do not react with Kr, Ar and Ne. It means that if Xe exists in the lower mantle at the same pressures as FeO2, xenon-iron oxides are predicted as potential Xe hosts in Earth's lower mantle and could provide the repository for the atmosphere's missing Xe. These findings establish robust materials basis, formation mechanism, and geological viability of these Xe-Fe oxides, which advance fundamental knowledge for understanding xenon chemistry and physics mechanisms for the possible deep-Earth Xe reservoir.
RESUMEN
Nitrogen has unique bonding ability to form single, double, and triple bonds, similar to that of carbon. However, a molecular crystal formed by an aromatic polynitrogen similar to a carbon system has not been found yet. Herein, a new form of stable all-nitrogen molecular crystals consisting of only bispentazole N10 molecules with exceedingly high energy density is predicted. The crystal structures and the conformation of N10 molecules are strongly correlated, both depending on the applied external pressure. These molecular crystals can be recovered upon the release of the pressure. The first-principles molecular dynamics simulations reveal that these all-nitrogen materials decompose at temperatures much higher than room temperature. The decompositions always start from breaking off N2 molecules from the nitrogen ring and can release a large amount of energy. These new polynitrogens are aromatic and are more stable than all the other polynitrogen crystals reported previously, providing a new green strategy to get all-nitrogen, nonpolluting high energy density materials without introducing any metal or other guest stabilizer.
RESUMEN
Graphene and carbon nanotubes (CNT) are the representatives of two-dimensional (2D) and one-dimensional (1D) forms of carbon, both exhibiting unique geometric structures and peculiar physical and chemical properties. Herein, we propose a family or series of 2D carbon-based highly anisotropic Dirac materials by weaving together an array of CNTs by direct C-C bonds or by graphene ribbons. By employing first-principles calculations, we demonstrate that these nano-makisus are thermally and dynamically stable and possess unique electronic properties. These 2D carbon allotropes are all metals and some nano-makisus show largely anisotropic Dirac cones, causing very different transport properties for the Dirac fermions along different directions. The Fermi velocities in the kx direction could be â¼170 times higher than those in the ky direction, which is the strongest anisotropy among 2D carbon allotropes to the best of our knowledge. This intriguing feature of the electronic structure has only been observed in heavy element materials with strong spin-orbit coupling. These results indicate that carbon based materials may have much broader applications in future nanoelectronics.
RESUMEN
Nitrogen analogues of Chichibabin's and Müller's hydrocarbons, DPh-D and TPh-D, based on 1,2,4-benzotriazinyl (Blatter) were studied. The two diradicaloids with good chemical and thermal stability exhibit smaller singlet-triplet energy gaps (ΔES-T from -1.05 to -1.27 kcal mol-1) than the hydrocarbon diradicaloids with the same bridges.
RESUMEN
Graphene and fullerene, two types of C allotropes with very different structures and properties, have attracted considerable attention from the scientific community as new forms of carbon for several decades. It will be a great advantage to combine the geometrical features of the two. Herein, we report a series of novel two-dimensional carbon allotropes that possess fullerene-like hollow structures (bubbles) embedded in a graphene sheet. These carbon allotropes are both thermally and dynamically stable. Calculations using hybrid functionals show that these two-dimensional carbon allotropes could be metals or semiconductors depending on the size and the pattern of the bubbles. The band gap can be as large as 1.66 eV. Due to the unique atomic configuration, some bubble-wrap carbons have unusual negative Poisson's ratios. The combination of graphene and fullerenes provides an appealing approach to design carbon-based materials with dexterous properties. For example, the insertion of the metal atoms inside the bubbles may greatly enhance the functions of such materials in photovoltaics and catalysis.
RESUMEN
Until very recently, helium had remained the last naturally occurring element that was known not to form stable solid compounds. Here we propose and demonstrate that there is a general driving force for helium to react with ionic compounds that contain an unequal number of cations and anions. The corresponding reaction products are stabilized not by local chemical bonds but by long-range Coulomb interactions that are significantly modified by the insertion of helium atoms, especially under high pressure. This mechanism also explains the recently discovered reactivity of He and Na under pressure. Our work reveals that helium has the propensity to react with a broad range of ionic compounds at pressures as low as 30 GPa. Since most of the Earth's minerals contain unequal numbers of positively and negatively charged atoms, our work suggests that large quantities of He might be stored in the Earth's lower mantle.
RESUMEN
Over the past few decades, the concept of hydrogen bonds, in which hydrogen is electrophilic, has been extended to halogen bonds, chalcogen bonds and pnicogen bonds. Herein, we show that such a non-covalent bonding also exists in noble gas compounds. Using first principles calculations, we illustrate the OXe-O bond in molecular crystal XeO3 and its effect on the behavior of this compound under pressure. Our calculations show that the covalent Xe-O bond lengths were elongated with increasing pressure and correspondingly the Xe-O stretching vibration frequencies were red shifted, which is similar to the change of H-bonds under pressure. The OXe-O bond and related hopping of O between neighboring Xe sites also correspond to the structural changes in the XeO3 compounds at about 2 GPa. Our study extends the concept of hydrogen bonding to include all p-block elements and show a new bonding type for Noble gas elements in which it acts as an electrophilic species.