Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
Molecules ; 28(19)2023 Sep 22.
Artículo en Inglés | MEDLINE | ID: mdl-37836596

RESUMEN

The employment of metal-organic frameworks in powder form is undesirable from an industrial perspective due to process and safety issues. This work is devoted to evaluating the impact of compression on the textural and structural properties of CPO-27(Ni). For this purpose, CPO-27(Ni) was synthesized under hydrosolvothermal conditions and characterized. Then, the resulting powder was compressed into binderless pellets using variable compression forces ranging from 5-90 kN (37-678 MPa) and characterized by means of nitrogen adsorption/desorption, thermogravimetric analysis and powder X-ray diffraction to evaluate textural, thermal and structural changes. Both textural and structural properties decreased with increasing compression force. Thermal stability was impacted in pellets compressed at forces over 70 kN. CPO-27(Ni) pelletized at 5, 8 and 10 kN, and retained more than 94% of its initial textural properties, while a loss of about one-third of the textural property was observed for the two most compressed samples (70 and 90 kN) compared to the starting powder.

2.
Materials (Basel) ; 17(1)2023 Dec 28.
Artículo en Inglés | MEDLINE | ID: mdl-38204013

RESUMEN

In the context of sustainable solutions, this study examines the pyrolysis process applied to corn cobs, with the aim of producing biochar and assessing its effectiveness in combating air pollution. In particular, it examines the influence of different pyrolysis temperatures on biochar properties. The results reveal a temperature-dependent trend in biochar yield, which peaks at 400 °C, accompanied by changes in elemental composition indicating increased stability and extended shelf life. In addition, high pyrolysis temperatures, above 400 °C, produce biochars with enlarged surfaces and improved pore structures. Notably, the highest pyrolysis temperature explored in this study is 600 °C, which significantly influences the observed properties of biochars. This study also explores the potential of biochar as an NO2 adsorbent, as identified by chemical interactions revealed by X-ray photoelectron spectroscopy (XPS) analysis. This research presents a promising and sustainable approach to tackling air pollution using corn cob biochar, providing insight into optimized production methods and its potential application as an effective NO2 adsorbent to improve air quality.

3.
J Funct Biomater ; 13(2)2022 Jun 02.
Artículo en Inglés | MEDLINE | ID: mdl-35735928

RESUMEN

The development of antimicrobial devices and surfaces requires the setup of suitable materials, able to store and release active principles. In this context, zeolites, which are microporous aluminosilicate minerals, hold great promise, since they are able to serve as a reservoir for metal-ions with antimicrobial properties. Here, we report on the preparation of Linde Type A zeolites, partially exchanged with combinations of metal-ions (Ag+, Cu2+, Zn2+) at different loadings (0.1-11.9 wt.%). We combine X-ray fluorescence, scanning electron microscopy, energy-dispersive X-ray spectroscopy, and X-ray diffraction to monitor the metal-ion contents, distribution, and conservation of the zeolite structure after exchange. Then, we evaluate their antimicrobial activity, using agar dilution and optical-density monitoring of Escherichia coli cultures. The results indicate that silver-loaded materials are at least 70-fold more active than the copper-, zinc-, and non-exchanged ones. Moreover, zeolites loaded with lower Ag+ concentrations remain active down to 0.1 wt.%, and their activities are directly proportional to the total Ag content. Sequential exchanges with two metal ions (Ag+ and either Cu2+, Zn2+) display synergetic or antagonist effects, depending on the quantity of the second metal. Altogether, this work shows that, by combining analytical and quantitative methods, it is possible to fine-tune the composition of bi-metal-exchanged zeolites, in order to maximise their antimicrobial potential, opening new ways for the development of next-generation composite zeolite-containing antimicrobial materials, with potential applications for the design of dental or bone implants, as well as biomedical devices and pharmaceutical products.

4.
Water Sci Technol ; 85(6): 1701-1719, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-35358066

RESUMEN

Safe drinking water is a necessity for every human being, but clean water is scarce and not easily available due to natural geochemical factors or industrial pollutant activity. Many issues involving water quality could be greatly improved using clays as adsorbents. We highlight for the first time, the uptake of fluoride from natural water by Laponite, synthetic hectorite clay, in raw and modified state. A series of batch adsorption experiments were carried out to evaluate the adsorption potential of the different parameters. The optimized parameters were: contact time, adsorbent dose and pH. It was found that fluoride uptake from natural water was better using raw Laponite and inorganic-modified Laponite than using organic-modified Laponite clays. Adsorbents were characterized before and after fluoride adsorption by X-ray diffraction, X-ray fluorescence, FTIR, thermo gravimetric analyses and 19F solid state NMR spectroscopy. The experimental data showed that both Langmuir and Freundlich models fitted an adsorption isotherm well. Thermodynamic parameters such as Gibbs free energy (ΔG°), enthalpy (ΔH°), and entropy (ΔS°) were calculated. These parameters indicated that fluoride adsorption onto Laponite was nonspontaneous and endothermic in temperature range between 25 and 45 °C.


Asunto(s)
Fluoruros , Adsorción , Arcilla , Humanos , Silicatos , Termodinámica
5.
Environ Sci Pollut Res Int ; 28(34): 46655-46668, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-33090346

RESUMEN

Keratin/cellulose cryogels were successfully fabricated using chicken feathers (CF) and cardboard (C) from environmental waste for the first time, to be exploited in oil/solvent absorption. The keratin/cellulose-based composites were obtained by combining the dissolution of CF and C waste in 1-butyl-3-methylimidazolium chloride (Bmim-Cl+) ionic liquid green solvent via regeneration, simply by the freeze-drying method. The characterization analysis of the synthesized keratin/cellulose-based composites was performed using Fourier transform infrared spectrometry, X-ray diffractometry, scanning electron microscopy, and thermogravimetry. The as-prepared cryogel can absorb various oils and organic solvents. Moreover, its sorption capacity can reach up to 6.9-17.7 times the weight of the initial cryogel. This kind of CF/C cryogel revealed good and fast absorption efficiency. It could also be reused by simple absorption/distillation and absorption/desorption methods. Through the kinetic analysis, it was found that the pseudo-second-order model was more appropriate for the keratin/cellulose cryogel oil absorption process. Besides, owing to its low cost, good absorption capacity, and excellent reusability, this cryogel has potential for spill cleanup of oils and organic solvents.


Asunto(s)
Celulosa , Restauración y Remediación Ambiental , Queratinas , Animales , Restauración y Remediación Ambiental/métodos , Plumas , Cinética , Aceites/química , Solventes/química
6.
Molecules ; 25(15)2020 Jul 28.
Artículo en Inglés | MEDLINE | ID: mdl-32731423

RESUMEN

In this study, a layer of a pure and dense phase of FAU-type zeolite was synthesized directly on the surface of α-Al2O3 plane macroporous support. Before hydrothermal synthesis, a step of cleaning of the support by an anionic detergent was performed, a roughness surface is created, allowing the anchoring of the zeolite nuclei and then their growth, favoring in this sense the formation of a homogeneous zeolite layer. The obtained membranes were fully characterized using X-ray diffraction analysis (XRD), nitrogen sorption, scanning electron microscopy (SEM), and mercury porosimetry. After 24 h of thermal treatment at 75 °C, a homogeneous zeolite layer composed of bipyramidal crystals of FAU-type zeolite is obtained with a thickness of about 2.5 µm. No obvious defects or cracks can be observed. It was found that the increase in heating temperature could lead to the appearance of an impurity phase, GIS-type zeolite. Then the ideal zeolite membrane was exchanged with Ag+ or Zn2+ cations to studies their antimicrobial properties. Zeolites membranes exchanged with Ag+ showed an agar-diffusive bactericidal activity against gram negative Escherichia coli (E. coli) bacteria. Zn2+ exchanged zeolite membrane presented a bacteriostatic activity that is less diffusive in agar. As expected, non-exchanged zeolite membrane (in its Na+ form) have no effect on bacterial activity. This process is particularly interesting for the synthesis of a good quality FAU-type zeolite membranes with antimicrobial properties.


Asunto(s)
Antibacterianos , Escherichia coli/crecimiento & desarrollo , Membranas Artificiales , Zeolitas , Antibacterianos/síntesis química , Antibacterianos/química , Antibacterianos/farmacología , Zeolitas/síntesis química , Zeolitas/química , Zeolitas/farmacología
7.
RSC Adv ; 10(44): 26165-26176, 2020 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-35519781

RESUMEN

Here, combining the evaporation-induced self-assembly (EISA) method and the liquid crystal templating pathway, mesostructured amorphous zirconium oxides have been prepared by a soft templating method without addition of any heteroelement to stabilize the mesopore framework. The recovered materials have been characterized by SAXS measurements, nitrogen adsorption-desorption analysis and X-ray diffraction (XRD). The obtained mesostructured zirconia exhibits a high thermal stability. An in situ XRD study performed as a function of temperature shows that the amorphous ZrO2, obtained after removal of the pore templating agent (pluronic P123), begins to crystallize in air from 420 °C. Amorphous mesostructured ZrO2 also presents a high hydrothermal stability; these materials are not degraded after 72 hours in boiling water.

8.
Materials (Basel) ; 12(6)2019 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-30893838

RESUMEN

Three different alumina-based Ni, Cu, Co oxide catalysts with metal loading of 10 wt %, and labeled 10Ni⁻Al, 10Co⁻Al and 10Cu⁻Al, were prepared by microwave-assisted solution combustion. Their morphological, structural and surface properties were deeply investigated by complementary physico-chemical techniques. Finally, the three materials were tested in CO oxidation used as test reaction for comparing their catalytic performance. The 10Cu⁻Al catalyst was constituted of copper oxide phase, while the 10Ni⁻Al and 10Co⁻Al catalysts showed the presence of "spinels" phases on the surface. The well-crystallized copper oxide phase in the 10Cu⁻Al catalyst, obtained by microwave synthesis, allowed for obtaining very high catalytic activity. With a CO conversion of 100% at 225 °C, the copper containing catalyst showed a much higher activity than that usually measured for catalytic materials of similar composition, thus representing a promising alternative for oxidation processes.

9.
Environ Sci Pollut Res Int ; 24(11): 9927-9939, 2017 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-28324253

RESUMEN

This paper aims to identify the correlation between the mineral contents in agropellets and particle matter and bottom ash characteristics during combustion in domestic boilers. Four agrifood residues with higher mineral contents, namely grape marc (GM), tomato waste (TW), exhausted olive mill solid waste (EOMSW) and olive mill wastewater (OMWW), were selected. Then, seven different pellets were produced from pure residues or their mixture and blending with sawdust. The physico-chemical properties of the produced pellets were analysed using different analytical techniques, and a particular attention was paid to their mineral contents. Combustion tests were performed in 12-kW domestic boiler. The particle matter (PM) emission was characterised through the particle number and mass quantification for different particle size. The bottom ash composition and size distribution were also characterised. Molar balance and chemometric analyses were performed to identify the correlation between the mineral contents and PM and bottom ash characteristics. The performed analyses indicate that K, Na, S and Cl are released partially or completely during combustion tests. In contrast, Ca, Mg, Si, P, Al, Fe and Mn are retained in the bottom ash. The chemometric analyses indicate that, in addition to the operating conditions and the pellet ash contents, K and Si concentrations have a significant effect on the PM emissions as well as on the agglomeration of bottom ash.


Asunto(s)
Ceniza del Carbón/química , Residuos Sólidos , Incineración , Minerales , Olea , Tamaño de la Partícula
10.
ACS Appl Mater Interfaces ; 9(3): 3113-3122, 2017 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-28032502

RESUMEN

The one pot synthesis of dual mesoporous titania (2.3 and 7.7 nm) has been achieved from a mixture of fluorinated and Pluronic surfactants. The small and large mesopore networks are templated, respectively, by a fluorinated-rich liquid crystal and a Pluronic-rich liquid crystal, which are in equilibrium. After calcination at 350 °C, the amorphous walls are transformed into semicrystalline anatase preserving the mesoporous structure. Results concerning the photodegradation of methyl orange using the calcined photocatalysts highlight that the kinetic rate constant (k) determined for the dual mesoporous titania is 2.6 times higher than the k value obtained for the monomodal ones.

11.
Nanotechnology ; 27(34): 345601, 2016 Aug 26.
Artículo en Inglés | MEDLINE | ID: mdl-27418591

RESUMEN

We have developed a facile, efficient, low cost and 'green' photochemical approach to preparing surfactant-free Pd nanoparticles and Pd-immobilized@acrylate photo-polymer films at room temperature, under air and without any additional treatment. The reaction system only includes a photo-initiator used as a generator of free radicals and a Pd(II) salt. In ethanol solution, the photochemical reduction of Pd(II) to Pd(0) generates very small metal particles with a narrow size distribution (2-4 nm). Furthermore, we have shown that the formation of Pd nanoparticles from a Pd(II) salt can be reversible thus allowing easy handling and safe storage with the possibility of generating the nanoparticles just before use. In the presence of an acrylate bifunctional monomer, Pd@polymer film was obtained through a 'one-pot, one-step' process resulting from a simultaneous photo-reduction of Pd(II) and photo-polymerization of acrylate units. The simultaneous generation of a 3D polymer network and of metal particles leads to a homogeneous distribution of Pd nanoparticles in the photo-polymer matrix with an average diameter of approximately 3.7 ± 1.1 nm. Such as-prepared Pd@polymer films were found to efficiently catalyze the Mizoroki-Heck reaction in the presence of only 0.9 mequiv. of supported palladium. The major interest of this arrangement is its recoverability and reusability, which makes it very attractive both from a practical and economical viewpoint. Finally, it is worth noting that this innovation offers a great advantage over concurrent methods in that it is simply generated within minutes, it is highly stable, and there is sharp monodispersity in the size of the Pd nanoparticles that can be stored for months without alteration of their physico-chemical properties and catalytic activity.

12.
J Environ Manage ; 167: 147-55, 2016 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-26686066

RESUMEN

This study concerns cationic exchanges performed in order to remove ammonium and potassium cations from manure by using various zeolites: clinoptilolite, chabazite and NaX faujasite. First, the effect of temperature (25 °C and 40 °C) on the exchange rate between zeolites and an ammonium chloride solution was investigated. Then, cationic exchanges were performed on these three zeolites using on one side a mixed ammonium and potassium chloride solution reproducing the chemical composition of a swine manure and on the other side the corresponding liquid manure. No significant difference was observed on the exchange rate and the trapping of ammonium cations by changing the temperature (25 or 40 °C). Clinoptilolite showed a good selectivity towards ammonium cations using model (NH4Cl, and mixed NH4Cl/KCl) solutions but is less efficient with the liquid manure. Chabazite and faujasite were found more efficient than clinoptilolite for trapping ammonium cations. However, NaX faujasite enables trapping 3 times more ammonium cations than chabazite from manure (60 and 20 mg/g, respectively). Moreover, chabazite allowed to trap the same amount of potassium cations than NaX faujasite (33 and 35 mg/g, respectively).


Asunto(s)
Compuestos de Amonio/aislamiento & purificación , Estiércol , Potasio/aislamiento & purificación , Eliminación de Residuos Líquidos/métodos , Cloruro de Amonio/química , Compuestos de Amonio/química , Animales , Cationes/química , Potasio/química , Soluciones , Sus scrofa , Temperatura , Zeolitas
13.
Langmuir ; 29(6): 1963-9, 2013 Feb 12.
Artículo en Inglés | MEDLINE | ID: mdl-23311773

RESUMEN

Over the past ten years, understanding the self-assembly process within mesostructured silica films has been a major concern. Our characterization approach relies on two powerful and complementary techniques: in situ time-resolved FTIR spectroscopy and ex situ solid-state NMR. As model systems, three silica/surfactant films displaying various degrees of mesostructuration were synthesized using an amphiphilic block copolymer (PEO-b-PPO-b-PEO) via a UV light induced self-assembly process. The key idea is that the hydration state of the hydrophobic PPO chain is expected to be different depending upon whether the sample is amorphous (blend) or mesostructured (segregated). With real-time FTIR experiments, we show that the methyl deformation mode can act as a signature for the PPO microenvironment so as to trace the progressive copolymer self-association throughout the irradiation time. In (1)H solid-state NMR, the dependence of the (1)H chemical shift on the PPO hydration state has been exploited to evidence the extent of mesostructuration.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA