RESUMEN
Introduction: During glomerular diseases, podocyte-specific pathways can modulate the intensity of histological disease and prognosis. The therapeutic targeting of these pathways could thus improve the management and prognosis of kidney diseases. The Janus Kinase/Signal Transducer and Activator of Transcription (JAK/STAT) pathway, classically described in immune cells, has been recently described in detail in intrinsic kidney cells. Methods: We describe STAT5 expression in human kidney biopsies from patients with focal segmental glomerulosclerosis (FSGS) and studied mice with a podocyte-specific Stat5 deletion in experimental glomerular diseases. Results: Here, we show, for the first time, that STAT5 is activated in human podocytes in FSGS. In addition, podocyte-specific Stat5 inactivation aggravates the structural and functional alterations in a mouse model of FSGS. This could be due, at least in part, to an inhibition of autophagic flux. Finally, interleukin 15 (IL-15), a classical activator of STAT5 in immune cells, increases STAT5 phosphorylation in human podocytes, and its administration alleviates glomerular injury in vivo by maintaining autophagic flux in podocytes. Conclusion: Activating podocyte STAT5 with commercially available IL-15 represents a potential new therapeutic avenue for FSGS.
RESUMEN
Unlike classical protein kinase A, with separate catalytic and regulatory subunits, EPACs are single chain multi-domain proteins containing both catalytic and regulatory elements. The importance of cAMP-Epac-signaling as an energy provider has emerged over the last years. However, little is known about Epac1 signaling in chronic kidney disease. Here, we examined the role of Epac1 during the progression of glomerulonephritis (GN). We first observed that total genetic deletion of Epac1 in mice accelerated the progression of nephrotoxic serum (NTS)-induced GN. Next, mice with podocyte-specific conditional deletion of Epac1 were generated and showed that NTS-induced GN was exacerbated in these mice. Gene expression analysis in glomeruli at the early and late phases of GN showed that deletion of Epac1 in podocytes was associated with major alterations in mitochondrial and metabolic processes and significant dysregulation of the glycolysis pathway. In vitro, Epac1 activation in a human podocyte cell line increased mitochondrial function to cope with the extra energy demand under conditions of stress. Furthermore, Epac1-induced glycolysis and lactate production improved podocyte viability. To verify the in vivo therapeutic potential of Epac1 activation, the Epac1 selective cAMP mimetic 8-pCPT was administered in wild type mice after induction of GN. 8-pCPT alleviated the progression of GN by improving kidney function with decreased structural injury with decreased crescent formation and kidney inflammation. Importantly, 8-pCPT had no beneficial effect in mice with Epac1 deletion in podocytes. Thus, our data suggest that Epac1 activation is an essential protective mechanism in GN by reprogramming podocyte metabolism. Hence, targeting Epac1 activation could represent a potential therapeutic approach.
Asunto(s)
AMP Cíclico , Glomerulonefritis , Factores de Intercambio de Guanina Nucleótido , Reprogramación Metabólica , Podocitos , Animales , Humanos , Masculino , Ratones , Línea Celular , AMP Cíclico/metabolismo , Modelos Animales de Enfermedad , Progresión de la Enfermedad , Metabolismo Energético/efectos de los fármacos , Glomerulonefritis/patología , Glomerulonefritis/metabolismo , Glomerulonefritis/genética , Glomerulonefritis/prevención & control , Glucólisis , Factores de Intercambio de Guanina Nucleótido/metabolismo , Factores de Intercambio de Guanina Nucleótido/genética , Ratones Endogámicos C57BL , Ratones Noqueados , Mitocondrias/metabolismo , Mitocondrias/patología , Podocitos/metabolismo , Podocitos/patología , Transducción de SeñalRESUMEN
Cardiorenal syndromes type 1 and 2 are complex disorders in which cardiac dysfunction leads to kidney dysfunction. However, the mechanisms remain incompletely explained, during pulmonary hypertension in particular. The objective of this study is to develop an original preclinical model of cardiorenal syndrome secondary to a pulmonary hypertension in piglets. Twelve 2-month-old Large White piglets were randomized in two groups: (1) induction of pulmonary hypertension by ligation of the left pulmonary artery and iterative embolizations of the right lower pulmonary artery, or (2) Sham interventions. We evaluated the cardiac function using right heart catheterization, echocardiography and measurement of biochemistry markers). Kidney was characterized using laboratory blood and urine tests, histological evaluation, immunostainings for renal damage and repair, and a longitudinal weekly assessment of the glomerular filtration rate using creatinine-based estimation and intravenous injection of an exogenous tracer on one piglet. At the end of the protocol (6 weeks), the mean pulmonary artery pressure (32 ± 10 vs. 13 ± 2 mmHg; p = 0.001), pulmonary vascular resistance (9.3 ± 4.7 vs. 2.5 ± 0.4 WU; p = 0.004) and central venous pressure were significantly higher in the pulmonary hypertension group while the cardiac index was not different. Piglets with pulmonary hypertension had higher troponin I. We found significant tubular damage and an increase in albuminuria in the pulmonary hypertension group and negative correlation between pulmonary hypertension and renal function. We report here the first porcine model of cardiorenal syndrome secondary to pulmonary hypertension.
Asunto(s)
Síndrome Cardiorrenal , Cardiopatías , Insuficiencia Cardíaca , Hipertensión Pulmonar , Animales , Síndrome Cardiorrenal/etiología , Riñón , PorcinosRESUMEN
Dry eye disease (DED) is a multifactorial disorder in which the eyes respond to minor stimuli with abnormal sensations, such as dryness, blurring, foreign body sensation, discomfort, irritation, and pain. Corneal pain, as one of DED's main symptoms, has gained recognition due to its increasing prevalence, morbidity, and the resulting social burden. The cornea is the most innervated tissue in the body, and the maintenance of corneal integrity relies on a rich density of nociceptors, such as polymodal nociceptor neurons, cold thermoreceptor neurons, and mechano-nociceptor neurons. Their sensory responses to different stimulating forces are linked to the specific expression of transient receptor potential (TRP) channels. TRP channels are a group of unique ion channels that play important roles as cellular sensors for various stimuli. These channels are nonselective cation channels with variable Ca2+ selectivity. TRP homologs are a superfamily of 28 different members that are subdivided into 7 different subfamilies based on differences in sequence homology. Many of these subtypes are expressed in the eye on both neuronal and non-neuronal cells, where they affect various stress-induced regulatory responses essential for normal vision maintenance. This article reviews the current knowledge about the expression, function, and regulation of TRPs in ocular surface tissues. We also describe their implication in DED and ocular pain. These findings contribute to evidence suggesting that drug-targeting TRP channels may be of therapeutic benefit in the clinical setting of ocular pain.
RESUMEN
A recent article described a thickening of the glomerular basement membrane (GBM) along with changes in the expression of key components of the extracellular matrix in 6-month-old NPHS2-Cre transgenic mice, which express the Cre recombinase specifically in podocytes. This transgenic line has been widely used to characterize the implication of candidate genes in glomerular diseases in younger mice. Using a different mouse strain (C57BL/6J) than the previous report (129S6/SvEvTac), we sought to characterize 3- and 6-month-old NPHS2-Cre+/- mice in control and pathological conditions. At baseline, there was no difference in renal function and histology between control and NPHS2-Cre+/- mice. Notably, GBM thickness evaluated by transmission electron microscopy was similar between the two groups. We then induced an immune-mediated severe glomerular insult, the anti-glomerular basement membrane glomerulonephritis model (anti-GBM-GN) in 3-month-old control and NPHS2-Cre+/- mice. NPHS2-Cre+/- mice exhibited the same alterations in renal function and structure as control mice. In summary, our study strongly suggests that NPHS2-Cre+/- transgenic mice on a C57BL/6J background can be safely used for podocyte-specific gene inactivation in control conditions and in the anti-GBM-GN model.
Asunto(s)
Membrana Basal Glomerular , Glomerulonefritis , Integrasas , Podocitos , Animales , Modelos Animales de Enfermedad , Membrana Basal Glomerular/metabolismo , Glomerulonefritis/metabolismo , Integrasas/genética , Integrasas/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Podocitos/metabolismoRESUMEN
BACKGROUND: Polycystic kidney disease (PKD) is a genetic disorder affecting millions of people worldwide that is characterized by fluid-filled cysts and leads to end-stage renal disease (ESRD). The hallmarks of PKD are proliferation and dedifferentiation of tubular epithelial cells, cellular processes known to be regulated by Notch signaling. METHODS: We found increased Notch3 expression in human PKD and renal cell carcinoma biopsies. To obtain insight into the underlying mechanisms and the functional consequences of this abnormal expression, we developed a transgenic mouse model with conditional overexpression of the intracellular Notch3 (ICN3) domain specifically in renal tubules. We evaluated the alterations in renal function (creatininemia, BUN) and structure (cysts, fibrosis, inflammation) and measured the expression of several genes involved in Notch signaling and the mechanisms of inflammation, proliferation, dedifferentiation, fibrosis, injury, apoptosis and regeneration. RESULTS: After one month of ICN3 overexpression, kidneys were larger with tubules grossly enlarged in diameter, with cell hypertrophy and hyperplasia, exclusively in the outer stripe of the outer medulla. After three months, mice developed numerous cysts in proximal and distal tubules. The cysts had variable sizes and were lined with a single- or multilayered, flattened, cuboid or columnar epithelium. This resulted in epithelial hyperplasia, which was observed as protrusions into the cystic lumen in some of the renal cysts. The pre-cystic and cystic epithelium showed increased expression of cytoskeletal filaments and markers of epithelial injury and dedifferentiation. Additionally, the epithelium showed increased proliferation with an aberrant orientation of the mitotic spindle. These phenotypic tubular alterations led to progressive interstitial inflammation and fibrosis. CONCLUSIONS: In summary, Notch3 signaling promoted tubular cell proliferation, the alignment of cell division, dedifferentiation and hyperplasia, leading to cystic kidney diseases and pre-neoplastic lesions.
Asunto(s)
Células Epiteliales/metabolismo , Túbulos Renales/metabolismo , Enfermedades Renales Poliquísticas/etiología , Enfermedades Renales Poliquísticas/metabolismo , Receptor Notch3/metabolismo , Animales , Biomarcadores , Modelos Animales de Enfermedad , Susceptibilidad a Enfermedades , Células Epiteliales/patología , Fibrosis , Expresión Génica , Inmunohistoquímica , Neoplasias Renales/etiología , Neoplasias Renales/metabolismo , Neoplasias Renales/patología , Túbulos Renales/patología , Ratones , Enfermedades Renales Poliquísticas/patología , Receptor Notch3/genéticaRESUMEN
Ischemia is a common cause of acute kidney injury worldwide, frequently occurring in patients undergoing cardiac surgery or admitted to the intensive care unit (ICU). Thus, ischemia-reperfusion injury (IRI) remains one of the main experimental models for the study of kidney diseases. However, the classical technique, based on non-traumatic surgical clamps, suffers from several limitations. It does not allow the induction of multiple episodes of acute kidney injury (AKI) in the same animal, which would be relevant from a human perspective. It also requires a deep and long sedation, raising the question of potential anaesthesia-related biases. We designed a vascular occluding device that can be activated remotely in conscious mice. We first assessed the intensity and the reproducibility of the acute kidney injury induced by this new device. We finally investigated the role played by the anaesthesia in the IRI models at the histological, functional and transcriptomic levels. We showed that this technique allows the rapid induction of renal ischemia in a repeatable and reproducible manner, breaking several classical limitations. In addition, we used its unique specificities to highlight the renal protective effect conferred by the anaesthesia, related to the mitigation of the IRI transcriptomic program.
Asunto(s)
Anestesia , Ketamina/farmacología , Enfermedades Renales/metabolismo , Riñón/metabolismo , Daño por Reperfusión/metabolismo , Transcriptoma , Xilazina/farmacología , Animales , Modelos Animales de Enfermedad , Ketamina/efectos adversos , Masculino , Ratones , Xilazina/efectos adversosRESUMEN
Gain-of-function mutations in with no lysine (K) 1 (WNK1) and WNK4 genes are responsible for familial hyperkalemic hypertension (FHHt), a rare, inherited disorder characterized by arterial hypertension and hyperkalemia with metabolic acidosis. More recently, FHHt-causing mutations in the Kelch-like 3-Cullin 3 (KLHL3-CUL3) E3 ubiquitin ligase complex have shed light on the importance of WNK's cellular degradation on renal ion transport. Using full exome sequencing for a 4-generation family and then targeted sequencing in other suspected cases, we have identified new missense variants in the WNK1 gene clustering in the short conserved acidic motif known to interact with the KLHL3-CUL3 ubiquitin complex. Affected subjects had an early onset of a hyperkalemic hyperchloremic phenotype, but normal blood pressure values"Functional experiments in Xenopus laevis oocytes and HEK293T cells demonstrated that these mutations strongly decrease the ubiquitination of the kidney-specific isoform KS-WNK1 by the KLHL3-CUL3 complex rather than the long ubiquitous catalytically active L-WNK1 isoform. A corresponding CRISPR/Cas9 engineered mouse model recapitulated both the clinical and biological phenotypes. Renal investigations showed increased activation of the Ste20 proline alanine-rich kinase-Na+-Cl- cotransporter (SPAK-NCC) phosphorylation cascade, associated with impaired ROMK apical expression in the distal part of the renal tubule. Together, these new WNK1 genetic variants highlight the importance of the KS-WNK1 isoform abundance on potassium homeostasis.
Asunto(s)
Acidosis/metabolismo , Túbulos Renales Distales/metabolismo , Mutación , Seudohipoaldosteronismo/metabolismo , Proteína Quinasa Deficiente en Lisina WNK 1/metabolismo , Acidosis/genética , Acidosis/patología , Proteínas Adaptadoras Transductoras de Señales/genética , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Secuencias de Aminoácidos , Animales , Proteínas Cullin/genética , Proteínas Cullin/metabolismo , Células HEK293 , Humanos , Túbulos Renales Distales/patología , Ratones , Ratones Mutantes , Proteínas de Microfilamentos/genética , Proteínas de Microfilamentos/metabolismo , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Seudohipoaldosteronismo/genética , Seudohipoaldosteronismo/patología , Proteína Quinasa Deficiente en Lisina WNK 1/genética , Xenopus laevisRESUMEN
Collagen IV is a major component of basement membranes (BMs). The α1(IV) chain, encoded by the COL4A1 gene, is expressed ubiquitously and associates with the α2(IV) chain to form the α1α1α2(IV) heterotrimer. Several COL4A1 mutations affecting a conformational domain containing integrin-binding sites are responsible for the systemic syndrome of hereditary angiopathy, nephropathy, aneurysms, and cramps (HANAC). To analyze the pathophysiology of HANAC, Col4a1 mutant mice bearing the p.Gly498Val mutation were generated. Analysis of the skeletal muscles of Col4a1G498V mutant animals showed morphologic characteristics of a muscular dystrophy phenotype with myofiber atrophy, centronucleation, focal inflammatory infiltrates, and fibrosis. Abnormal ultrastructural aspects of muscle BMs was associated with reduced extracellular secretion of the mutant α1α1α2(IV) trimer. In addition to muscular dystrophic features, endothelial cell defects of the muscle capillaries were observed, with intracytoplasmic accumulation of the mutant α1α1α2(IV) molecules, endoplasmic reticulum cisternae dilation, and up-regulation of endoplasmic reticulum stress markers. Induction of the unfolded protein response in Col4a1 mutant muscle tissue resulted in an excess of apoptosis in endothelial cells. HANAC mutant animals also presented with a muscular functional impairment and increased serum creatine kinase levels reflecting altered muscle fiber sarcolemma. This extensive description of the muscular phenotype of the Col4a1 HANAC murine model suggests a potential contribution of primary endothelial cell defects, together with muscle BM alterations, to the development of COL4A1-related myopathy.
Asunto(s)
Vasos Sanguíneos/anomalías , Colágeno Tipo IV/genética , Calambre Muscular/genética , Músculo Esquelético/irrigación sanguínea , Músculo Esquelético/patología , Mutación/genética , Enfermedad de Raynaud/genética , Animales , Apoptosis , Vasos Sanguíneos/patología , Peso Corporal , Creatina Quinasa/sangre , Distrofina/metabolismo , Estrés del Retículo Endoplásmico , Células Endoteliales/patología , Células Endoteliales/ultraestructura , Matriz Extracelular/metabolismo , Integrina beta1/metabolismo , Ratones , Ratones Mutantes , Músculo Esquelético/ultraestructura , Tamaño de los Órganos , Molécula-1 de Adhesión Celular Endotelial de Plaqueta/metabolismoRESUMEN
Hereditary angiopathy, nephropathy, aneurysms, and muscle cramps (HANAC) syndrome is an autosomal dominant syndrome caused by mutations in COL4A1 that encodes the α1 chain of collagen IV, a major component of basement membranes. Patients present with cerebral small vessel disease, retinal tortuosity, muscle cramps, and kidney disease consisting of multiple renal cysts, chronic kidney failure, and sometimes hematuria. Mutations producing HANAC syndrome localize within the integrin binding site containing CB3[IV] fragment of the COL4A1 protein. To investigate the pathophysiology of HANAC syndrome, we generated mice harboring the Col4a1 p.Gly498Val mutation identified in a family with the syndrome. Col4a1 G498V mutation resulted in delayed glomerulogenesis and podocyte differentiation without reduction of nephron number, causing albuminuria and hematuria in newborns. The glomerular defects resolved within the first month, but glomerular cysts developed in 3-month-old mutant mice. Abnormal structure of Bowman's capsule was associated with metalloproteinase induction and activation of the glomerular parietal epithelial cells that abnormally expressed CD44,α-SMA, ILK, and DDR1. Inflammatory infiltrates were observed around glomeruli and arterioles. Homozygous Col4a1 G498V mutant mice additionally showed dysmorphic papillae and urinary concentration defects. These results reveal a developmental role for the α1α1α2 collagen IV molecule in the embryonic glomerular basement membrane, affecting podocyte differentiation. The observed association between molecular alteration of the collagenous network in Bowman's capsule of the mature kidney and activation of parietal epithelial cells, matrix remodeling, and inflammation may account for glomerular cyst development and CKD in patients with COL4A1-related disorders.