Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
1.
Tob Induc Dis ; 21: 159, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38059181

RESUMEN

INTRODUCTION: Electronic cigarettes (e-cigarettes) rapidly evolved from large modifiable (MOD) devices, to small and affordable 'POD' devices. Detailed information on user demographics and preferences according to device type, which can inform potential chemical exposure and policy recommendations, is currently limited. The goal of this study is to describe user demographics, use behaviors and preferences, as well as self-reported health outcomes according to the e-cigarette device type used. METHODS: From April 2019 to March 2020, 91 participants from Maryland (18 MOD users, 26 POD users, 16 dual users (use of both combustible and e-cigarettes), and 31 non-users (never e-cigarette users and never smokers or >6 months former use) were recruited. A comprehensive questionnaire collected sociodemographic characteristics, e-cigarette/tobacco use behaviors, self-reported health outcomes, device characteristics and preferences. Chi-squared tests for categorical variables, ANOVA for continuous variables, qualitative thematic analysis, linear and logistic regressions were used to assess relationships between variables and groups. RESULTS: POD users were younger (average 22.5 years) than MOD users (30.8 years) or dual users (34.3 years) (p<0.001). MOD users reported more puffs per day (mean ± SD: 373 ± 125 puffs) compared to POD users (123.0 ± 172.5). E-cigarette users who were former smokers used 1.16 mg/mL lower nicotine concentrations compared to lifetime exclusive e-cigarette users (p=0.03) in linear models. Exclusive POD users self-reported more coughing than exclusive MOD or dual users (p=0.02). E-cigarette users reported more shortness of breath, headaches, and fatigue from their e-cigarette use compared to non-users. CONCLUSIONS: We found significant differences between user demographics, e-cigarette preferences, device characteristics, and use behaviors by user group. This information can help explain exposure to chemicals from e-cigarettes, including compounds with known toxic effects (e.g. metals, formaldehyde), and help inform the design of prevention and intervention strategies and policy decisions.

2.
Environ Res ; 221: 115234, 2023 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-36634896

RESUMEN

INTRODUCTION: The use of electronic nicotine delivery systems (ENDS), or vaping, is a relatively recent phenomenon, and there are various gaps in our current knowledge regarding the specific effects of e-cigarettes, such as their immunological effects. The importance of this question became even more relevant in light of the COVID-19 pandemic. OBJECTIVE: This literature review examines the relationship between the use of electronic nicotine delivery systems (ENDS) and immunological effects to examine available information and identify gaps in the current knowledge. Our search strategy included studies focusing on the effects of ENDS on the immune response during infectious respiratory diseases such as COVID-19 and pneumonia. METHODS: Peer-reviewed studies presenting quantitative data published from 2007, the year that e-cigarettes were introduced to the US market until 2022 have been included. All studies were indexed in PubMed. We excluded papers on THC and EVALI (E-cigarette, or Vaping Product, Use Associated Lung Injury) as we wanted to focus on the effects of nicotine devices. RESULTS: Among the 21 articles that assessed the relationship between ENDS and immunological health effects, we found eight studies based on cell models, two articles based on both cell and mouse models, five articles based on mouse models, and six studies of human populations. Most of the articles identified in our review demonstrated a potential association between vaping and adverse immunological health effects. DISCUSSION: Overall, the evidence from the cell and animal studies indicates that there is a positive, statistically significant association between vaping and adverse immune response during infectious respiratory diseases. The evidence from human studies is not conclusive.


Asunto(s)
COVID-19 , Sistemas Electrónicos de Liberación de Nicotina , Vapeo , Animales , Ratones , Humanos , Pandemias , Pulmón , Nicotina , Vapeo/efectos adversos
3.
Inhal Toxicol ; 34(3-4): 90-98, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35275758

RESUMEN

While some in vitro and in vivo experiments have studied the toxic effects of e-cigarette (e-cig) components, the typical aerosol properties released from e-cigarettes have not been well characterized. In the present study, we characterized the variability in mass concentration and particle size distribution associated with the aerosol generation of different devices and e-liquid compositions in an experimental setup. The findings of this study indicate a large inter-day variability in the experiments, likely due to poor quality control in some e-cig devices, pointing to the need for a better understanding of all the factors affecting exposures in in vitro and in vivo experiments, and the development of standardized protocols for generation and measurement of e-cig aerosols.


Asunto(s)
Sistemas Electrónicos de Liberación de Nicotina , Aerosoles
4.
Sci Rep ; 8(1): 4916, 2018 03 20.
Artículo en Inglés | MEDLINE | ID: mdl-29559734

RESUMEN

Citrate-stabilized iron oxide magnetic nanoparticles (MNPs) were coated with one of carboxymethyl dextran (CM-dextran), polyethylene glycol-polyethylene imine (PEG-PEI), methoxy-PEG-phosphate+rutin, or dextran. They were characterized for size, zeta potential, hysteresis heating in an alternating magnetic field, dynamic magnetic susceptibility, and examined for their distribution in mouse organs following intravenous delivery. Except for PEG-PEI-coated nanoparticles, all coated nanoparticles had a negative zeta potential at physiological pH. Nanoparticle sizing by dynamic light scattering revealed an increased nanoparticle hydrodynamic diameter upon coating. Magnetic hysteresis heating changed little with coating; however, the larger particles demonstrated significant shifts of the peak of complex magnetic susceptibility to lower frequency. 48 hours following intravenous injection of nanoparticles, mice were sacrificed and tissues were collected to measure iron concentration. Iron deposition from nanoparticles possessing a negative surface potential was observed to have highest accumulation in livers and spleens. In contrast, iron deposition from positively charged PEG-PEI-coated nanoparticles was observed to have highest concentration in lungs. These preliminary results suggest a complex interplay between nanoparticle size and charge determines organ distribution of systemically-delivered iron oxide magnetic nanoparticles.


Asunto(s)
Compuestos Férricos/metabolismo , Hígado/metabolismo , Pulmón/metabolismo , Nanopartículas/metabolismo , Bazo/metabolismo , Administración Intravenosa , Animales , Compuestos Férricos/química , Calor , Fenómenos Magnéticos , Masculino , Ratones , Ratones Desnudos , Nanopartículas/química , Tamaño de la Partícula , Polietilenglicoles/química , Electricidad Estática
5.
Int J Hyperthermia ; 34(4): 373-381, 2018 06.
Artículo en Inglés | MEDLINE | ID: mdl-28758530

RESUMEN

We report the development and optimisation of an assay for quantitating iron from iron oxide nanoparticles in biological matrices by using ferene-s, a chromogenic compound. The method is accurate, reliable and can be performed with basic equipment common to many laboratories making it convenient and inexpensive. The assay we have developed is suited for quantitation of iron in cell culture studies with iron oxide nanoparticles, which tend to manifest low levels of iron. The assay was validated with standard reference materials and with inductively coupled plasma-mass spectrometry (ICP-MS) to accurately measure iron concentrations ∼1 × 10-6 g in about 1 × 106 cells (∼1 × 10-12 g Fe per cell). The assay requires preparation and use of a working solution to which samples can be directly added without further processing. After overnight incubation, the absorbance can be measured with a standard UV/Vis spectrophotometer to provide iron concentration. Alternatively, for expedited processing, samples can be digested with concentrated nitric acid before addition to the working solution. Optimization studies demonstrated significant deviations accompany variable digestion times, highlighting the importance to ensure complete iron ion liberation from the nanoparticle or sample matrix to avoid underestimating iron concentration. When performed correctly, this method yields reliable iron ion concentration measurements to ∼2 × 10-6 M (1 × 10-7 g/ml sample).


Asunto(s)
Compuestos Férricos , Hierro/análisis , Nanopartículas del Metal , Triazinas , Bioensayo , Línea Celular Tumoral , Colorimetría , Humanos , Espectrometría de Masas , Ácido Nítrico/química , Espectrofotometría
6.
Bull World Health Organ ; 92(8): 565-72, 2014 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-25177071

RESUMEN

OBJECTIVE: To assess the extent of arsenic contamination of groundwater and surface water in Peru and, to evaluate the accuracy of the Arsenic Econo-Quick(™) (EQ) kit for measuring water arsenic concentrations in the field. METHODS: Water samples were collected from 151 water sources in 12 districts of Peru, and arsenic concentrations were measured in the laboratory using inductively-coupled plasma mass spectrometry. The EQ field kit was validated by comparing a subset of 139 water samples analysed by laboratory measurements and the EQ kit. FINDINGS: In 86% (96/111) of the groundwater samples, arsenic exceeded the 10 µg/l arsenic concentration guideline given by the World Health Organization (WHO) for drinking water. In 56% (62/111) of the samples, it exceeded the Bangladeshi threshold of 50 µg/l; the mean concentration being 54.5 µg/l (range: 0.1-93.1). In the Juliaca and Caracoto districts, in 96% (27/28) of groundwater samples arsenic was above the WHO guideline; and in water samples collected from the section of the Rímac river running through Lima, all had arsenic concentrations exceeding the WHO limit. When validated against laboratory values, the EQ kit correctly identified arsenic contamination relative to the guideline in 95% (106/111) of groundwater and in 68% (19/28) of surface water samples. CONCLUSION: In several districts of Peru, drinking water shows widespread arsenic contamination, exceeding the WHO arsenic guideline. This poses a public health threat requiring further investigation and action. For groundwater samples, the EQ kit performed well relative to the WHO arsenic limit and therefore could provide a vital tool for water arsenic surveillance.


Asunto(s)
Arsénico/análisis , Agua Potable , Monitoreo del Ambiente/instrumentación , Contaminantes Químicos del Agua/análisis , Perú , Espectrofotometría Atómica
7.
Int J Hyperthermia ; 30(3): 192-200, 2014 May.
Artículo en Inglés | MEDLINE | ID: mdl-24773041

RESUMEN

PURPOSE: Magnetic iron oxide nanoparticles (MNPs) are used as contrast agents for magnetic resonance imaging (MRI) and hyperthermia for cancer treatment. The relationship between MRI signal intensity and cellular iron concentration for many new formulations, particularly MNPs having magnetic properties designed for heating in hyperthermia, is lacking. In this study, we examine the correlation between MRI T2 relaxation time and iron content in cancer cells loaded with various MNP formulations. MATERIALS AND METHODS: Human prostate carcinoma DU-145 cells were loaded with starch-coated bionised nanoferrite (BNF), iron oxide (Nanomag® D-SPIO), Feridex™, and dextran-coated Johns Hopkins University (JHU) particles at a target concentration of 50 pg Fe/cell using poly-D-lysine transfection reagent. T2-weighted MRI of serial dilutions of these labelled cells was performed at 9.4 T and iron content quantification was performed using inductively coupled plasma mass spectrometry (ICP-MS). Clonogenic assay was used to characterise cytotoxicity. RESULTS: No cytotoxicity was observed at twice the target intracellular iron concentration (∼100 pg Fe/cell). ICP-MS revealed highest iron uptake efficiency with BNF and JHU particles, followed by Feridex and Nanomag-D-SPIO, respectively. Imaging data showed a linear correlation between increased intracellular iron concentration and decreased T2 times, with no apparent correlation among MNP magnetic properties. CONCLUSIONS: This study demonstrates that for the range of nanoparticle concentrations internalised by cancer cells the signal intensity of T2-weighted MRI correlates closely with absolute iron concentration associated with the cells. This correlation may benefit applications for cell-based cancer imaging and therapy including nanoparticle-mediated drug delivery and hyperthermia.


Asunto(s)
Medios de Contraste , Compuestos Férricos/administración & dosificación , Hipertermia Inducida , Imagen por Resonancia Magnética/métodos , Nanopartículas del Metal
8.
J Neurosurg Spine ; 20(6): 740-50, 2014 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-24702509

RESUMEN

OBJECT: The goal of this study was to optimize local delivery of magnetic nanoparticles in a rat model of metastatic breast cancer in the spine for tumor hyperthermia while minimizing systemic exposure. METHODS: A syngeneic mammary adenocarcinoma was implanted into the L-6 vertebral body of 69 female Fischer rats. Suspensions of 100-nm starch-coated iron oxide magnetic nanoparticles (micromod Partikeltechnologie GmbH) were injected into tumors 9 or 13 days after implantation. For nanoparticle distribution studies, tissues were harvested from a cohort of 36 rats, and inductively coupled plasma mass spectrometry and histopathological studies with Prussian blue staining were used to analyze the samples. Intratumor heating was tested in 4 anesthetized animals with a 20-minute exposure to an alternating magnetic field (AMF) at a frequency of 150 kHz and an amplitude of 48 kA/m or 63.3 kA/m. Intratumor and rectal temperatures were measured, and functional assessments of AMF-exposed animals and histopathological studies of heated tumor samples were examined. Rectal temperatures alone were tested in a cohort of 29 rats during AMF exposure with or without nanoparticle administration. Animal studies were completed in accordance with the protocols of the University Animal Care and Use Committee. RESULTS: Nanoparticles remained within the tumor mass within 3 hours of injection and migrated into the bone at 6, 12, and 24 hours. Subarachnoid accumulation of nanoparticles was noted at 48 hours. No evidence of lymphoreticular nanoparticle exposure was found on histological investigation or via inductively coupled plasma mass spectrometry. The mean intratumor temperatures were 43.2°C and 40.6°C on exposure to 63.3 kA/m and 48 kA/m, respectively, with histological evidence of necrosis. All animals were ambulatory at 24 hours after treatment with no evidence of neurological dysfunction. CONCLUSIONS: Locally delivered magnetic nanoparticles activated by an AMF can generate hyperthermia in spinal tumors without accumulating in the lymphoreticular system and without damaging the spinal cord, thereby limiting neurological dysfunction and minimizing systemic exposure. Magnetic nanoparticle hyperthermia may be a viable option for palliative therapy of spinal tumors.


Asunto(s)
Adenocarcinoma/secundario , Adenocarcinoma/terapia , Hipertermia Inducida , Nanopartículas de Magnetita/uso terapéutico , Neoplasias Mamarias Experimentales/patología , Neoplasias de la Columna Vertebral/secundario , Neoplasias de la Columna Vertebral/terapia , Animales , Línea Celular Tumoral , Modelos Animales de Enfermedad , Femenino , Distribución Aleatoria , Ratas , Ratas Endogámicas F344 , Espectrofotometría Atómica , Suspensiones
10.
Environ Sci Process Impacts ; 15(4): 721-9, 2013 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-23450296

RESUMEN

Using exhaled breath condensate (EBC) as a biological media for analysis of biomarkers of exposure may facilitate the understanding of inhalation exposures. In this study, we present method validation for the collection of EBC and analysis of metals in EBC. The collection method was designed for use in a small scale longitudinal study with the goal of improving reproducibility while maintaining economic feasibility. We incorporated the use of an Rtube with additional components as an assembly, and trained subjects to breathe into the apparatus. EBC was collected from 8 healthy adult subjects with no known elevated exposures to Mn, Cr, Ni, and Cd repeatedly (10 times) within 7 days and analyzed for these metals via ICP-MS. Method detection limits were obtained by mimicking the process of EBC collection with ultrapure water, and resulted in 46-62% of samples falling in a range less than the method detection limit. EBC metal concentrations were found to be statistically significantly associated (p < 0.05) with room temperature and relative humidity during collection, as well as with the gender of the subject. The geometric mean EBC metal concentrations in our unexposed subjects were 0.57 µg Mn per L, 0.25 µg Cr per L, 0.87 µg Ni per L, and 0.14 µg Cd per L. The overall standard deviation was greater than the mean estimate, and the major source in EBC metals concentrations was due to fluctuations in subjects' measurements over time rather than to the differences between separate subjects. These results suggest that measurement and control of EBC collection and analytical parameters are critical to the interpretation of EBC metals measurements. In particular, rigorous estimation of method detection limits of metals in EBC provides a more thorough evaluation of accuracy.


Asunto(s)
Pruebas Respiratorias/instrumentación , Cadmio/análisis , Cromo/análisis , Manganeso/análisis , Níquel/análisis , Adulto , Diseño de Equipo , Femenino , Humanos , Límite de Detección , Masculino , Reproducibilidad de los Resultados
11.
Nanomedicine (Lond) ; 8(1): 29-41, 2013 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-23173694

RESUMEN

AIM: To compare the measured surface temperature of variable size ensembles of cells heated by intracellular magnetic fluid hyperthermia with heat diffusion model predictions. MATERIALS & METHODS: Starch-coated Bionized NanoFerrite (Micromod Partikeltechnologie GmbH, Rostock, Germany) iron oxide magnetic nanoparticles were loaded into cultured DU145 prostate cancer cells. Cell pellets of variable size were treated with alternating magnetic fields. The surface temperature of the pellets was measured in situ and the associated cytotoxicity was determined by clonogenic survival assay. RESULTS & CONCLUSION: For a given intracellular nanoparticle concentration, a critical minimum number of cells was required for cytotoxic hyperthermia. Above this threshold, cytotoxicity increased with increasing cell number. The measured surface temperatures were consistent with those predicted by a heat diffusion model that ignores intercellular thermal barriers. These results suggest a minimum tumor volume threshold of approximately 1 mm(3), below which nanoparticle-mediated heating is unlikely to be effective as the sole cytotoxic agent.


Asunto(s)
Hipertermia Inducida , Nanopartículas , Neoplasias/terapia , Neoplasias de la Próstata/terapia , Humanos , Masculino , Microscopía Electrónica de Transmisión , Neoplasias de la Próstata/patología
12.
J Immunol Methods ; 388(1-2): 86-9, 2013 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-23201385

RESUMEN

Fungal cell wall components, such as (1-3)-ß-D-glucan, are known to be capable of activating the innate immune system and pose a respiratory health risk in different environments. Mass-based non-viable techniques commonly used for assessment of fungal exposures could be ß-D-glucan-specific, but are limited to analysis of liquid extracts. The variable solubility of different ß-D-glucans may underestimate ß-D-glucan exposure and long sampling times required for mass-based methods make assessing short-term exposures difficult. In this study, we evaluated the utility of the halogen immunoassay (HIA), an immunoblotting technique previously used for allergens, to immunodetect and quantify ß-D-glucan-carrying particles (BGCPs). The HIA was able to detect BGCPs without background staining when ß-D-glucan standards and air samples collected at a poultry house during short sampling periods were evaluated. The image analysis protocol previously developed by our group for mouse allergen allowed simultaneous immunodetection and quantification of ß-D-glucan-containing particles. Our results suggest that the HIA holds promise for quantifying ß-D-glucan exposures. To our knowledge, this is the first time in which the HIA was used for non-allergenic compounds of microbial or fungal origins.


Asunto(s)
Microbiología del Aire , Contaminación del Aire Interior/análisis , Monitoreo del Ambiente/métodos , Inmunoensayo/métodos , beta-Glucanos/análisis , Límite de Detección
13.
J Air Waste Manag Assoc ; 62(7): 773-82, 2012 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-22866579

RESUMEN

The main objectives of this study are to (1) characterize chemical constituents of particulate matter (PM) and (2) compare overall differences in PM collected from eight US. counties. This project was undertaken as a part of a larger research program conducted by the Johns Hopkins Particulate Matter Research Center (JHPMRC). The goal of the JHPMRC is to explore the relationship between health effects and exposure to ambient PM of differing composition. The JHPMRC collected weekly filter-based ambient fine particle samples from eight US. counties between January 2008 and January 2010. Each sampling effort consisted of a 5-6-week sampling period. Filters were analyzed for 25 metals using inductively coupled plasma mass spectrometry (ICP-MS). Overall compositional differences were ranked by principal component analysis (PCA). The results showed that weekly concentrations of each element varied 3-40 times between the eight counties. PCA showed that the first five principal components explained 85% of the total variance. The authors found significant overall compositional differences in PM as the average of standardized principal component scores differed between the counties. These findings demonstrate PCA is a useful tool to identify the differences in PM compositional mixtures by county. These differences will be helpful for epidemiological and toxicological studies to help explain why health risks associated with PM exposure are different in locations with similar mass concentrations of PM.


Asunto(s)
Contaminantes Atmosféricos/análisis , Metales/análisis , Material Particulado/análisis , Algoritmos , Monitoreo del Ambiente , Espectrometría de Masas , Análisis de Componente Principal , Manejo de Especímenes , Estados Unidos
14.
Nanomedicine (Lond) ; 7(11): 1697-711, 2012 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-22830502

RESUMEN

AIM: To assess the potential for injury to normal tissues in mice due to heating systemically delivered magnetic nanoparticles in an alternating magnetic field (AMF). MATERIALS & METHODS: Twenty three male nude mice received intravenous injections of dextran-superparamagnetic iron oxide nanoparticles on days 1-3. On day 6, they were exposed to AMF. On day 7, blood, liver and spleen were harvested and analyzed. RESULTS: Iron deposits were detected in the liver and spleen. Mice that had received a high-particle dose and a high AMF experienced increased mortality, elevated liver enzymes and significant liver and spleen necrosis. Mice treated with low-dose superparamagnetic iron oxide nanoparticles and a low AMF survived, but had elevated enzyme levels and local necrosis in the spleen. CONCLUSION: Magnetic nanoparticles producing only modest heat output can cause damage, and even death, when sequestered in sufficient concentrations. Dextran-superparamagnetic iron oxide nanoparticles are deposited in the liver and spleen, making these the sites of potential toxicity. Original submitted 16 August 2011; Revised submitted 21 March 2012; Published online 26 July 2012.


Asunto(s)
Dextranos/efectos adversos , Calefacción/efectos adversos , Hígado/patología , Nanopartículas de Magnetita/efectos adversos , Bazo/patología , Animales , Temperatura Corporal , Dextranos/administración & dosificación , Dextranos/toxicidad , Dextranos/ultraestructura , Hígado/metabolismo , Campos Magnéticos , Nanopartículas de Magnetita/administración & dosificación , Nanopartículas de Magnetita/toxicidad , Nanopartículas de Magnetita/ultraestructura , Masculino , Ratones , Ratones Desnudos , Bazo/metabolismo
15.
Environ Sci Technol ; 46(6): 3101-9, 2012 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-22309075

RESUMEN

The purpose of this study is to characterize manganese oxidation states and speciation in airborne particulate matter (PM) and describe how these potentially important determinants of PM toxicity vary by location. Ambient PM samples were collected from five counties across the US using a high volume sequential cyclone system that collects PM in dry bulk form segregated into "coarse" and "fine" size fractions. The fine fraction was analyzed for this study. Analyses included total Mn using ICP-MS and characterization of oxidation states and speciation using X-ray absorption spectroscopy (XAS). XAS spectra of all samples and ten standard compounds of Mn were obtained at the National Synchrotron Light Source. XAS data was analyzed using Linear Combination Fitting (LCF). Results of the LCF analysis describe differences in composition between samples. Mn(II) acetate and Mn(II) oxide are present in all samples, while Mn(II) carbonate and Mn(IV) oxide are absent. To the best of our knowledge, this is the first paper to characterize Mn composition of ambient PM and examine differences between urban sites in the US. Differences in oxidation state and composition indicate regional variations in sources and atmospheric chemistry that may help explain differences in health effects identified in epidemiological studies.


Asunto(s)
Contaminantes Atmosféricos/química , Manganeso/química , Material Particulado/química , Contaminantes Atmosféricos/análisis , Monitoreo del Ambiente , Manganeso/análisis , Oxidación-Reducción , Material Particulado/análisis , Estados Unidos , Espectroscopía de Absorción de Rayos X
16.
Environ Res ; 2011 Nov 14.
Artículo en Inglés | MEDLINE | ID: mdl-22088604

RESUMEN

This article has been withdrawn at the request of the author(s) and/or editor. The Publisher apologizes for any inconvenience this may cause. The full Elsevier Policy on Article Withdrawal can be found at http://www.elsevier.com/locate/withdrawalpolicy.

17.
J Environ Monit ; 12(10): 1807-14, 2010 Oct 06.
Artículo en Inglés | MEDLINE | ID: mdl-20676427

RESUMEN

In this paper, we describe the design, development and characterization of a high-volume sequential cyclone system for the collection of size-segregated PM in dry bulk form from the ambient environment in sufficient quantity for physical, chemical and toxicological characterization. The first stage of the system consists of a commercially available high volume PM(10) inlet. The second stage cyclone was designed by us to collect inhalable coarse particles (<10 µm and >2.5 µm). When tested individually with a challenge aerosol, a D(50) cut-size of this stage was found to be 2.3 µm at a flow rate of 1 m(3) min(-1). The third stage, a commercially available cyclone designed for surface dust sampling, had a D(50) cut-size of 0.3 µm when tested at the same flow rate. The purpose of the third stage is to collect the fine particle portion of PM(2.5) or accumulation mode (PM <2.5 µm and >0.1 µm). Thus, the sequential cyclone system will collect bulk samples of both the inhalable coarse particles and the fine particle portion of PM(2.5). The operation and maintenance of the new system are straightforward and allow for reliable collection of dry bulk ambient PM at relatively low cost.


Asunto(s)
Monitoreo del Ambiente/instrumentación , Contaminantes Ambientales/análisis , Material Particulado/análisis , Diseño de Equipo , Tamaño de la Partícula
18.
J Air Waste Manag Assoc ; 58(7): 928-39, 2008 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-18672717

RESUMEN

The purpose of this study was to evaluate the effect of traffic volume on ambient black carbon (BC) concentration in an inner-city neighborhood "hot spot" while accounting for modifying effects of weather and time. Continuous monitoring was conducted for 12 months at the Baltimore Traffic Study site surrounded by major urban streets that together carry over 150,000 vehicles per day. Outdoor BC concentration was measured with an Aethalometer; vehicles were counted pneumatically on two nearby streets. Meteorological data were also obtained. Missing data were imputed and all data were normalized to a 5-min observational interval (n = 105,120). Time-series modeling accounted for autoregressively (AR) correlated errors. This study found that outdoor BC was positively correlated at a statistically significant level with neighborhood-level vehicle counts, which contributed at a rate of 66 +/- 10 (SE) ng/m3 per 100 vehicles every 5 min. Winds from the SW-S-SE quarter were associated with the greatest increases in BC (376-612 ng/m3). These winds would have entrained BC from Baltimore's densely trafficked central business district, as well as a nearby interstate highway. The strong influence of wind direction implicates atmospheric transport processes in determining BC exposure. Dew point, mixing height, wind speed, season, and workday were also statistically significant predictors. Background exposure to BC was estimated to be 905 ng/m3. The optimal, statistically significant representation of BC's autocorrelation was AR([1:6]) x 288 x 2016, where the short-term AR factor (lags 1-6) indicated that BC concentrations are correlated for up to 30 min, and the AR factors for lags 288 and 2016 indicate longer-term autocorrelations at diurnal and weekly cycles, respectively. It was concluded that local exposure to BC from mobile sources is substantially modified by meteorological and temporal conditions, including atmospheric transport processes. BC concentration also demonstrates statistically significant autocorrelation at several time scales.


Asunto(s)
Contaminantes Atmosféricos/química , Carbono/química , Vehículos a Motor , Emisiones de Vehículos/análisis , Contaminación del Aire , Baltimore , Ciudades , Transportes
19.
Environ Sci Technol ; 42(12): 4570-6, 2008 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-18605588

RESUMEN

The biocides triclosan and triclocarban are wastewater contaminants whose occurrence and fate in estuarine sediments remain unexplored. We examined contaminant profiles in 137Cs/7Be-dated sediment cores taken near wastewater treatment plants in the Chesapeake Bay watershed (CB), Maryland and Jamaica Bay(JB), New York. In JB, biocide occurrences tracked the time course of biocide usage and wastewater treatment strategies employed, first appearing in the 1950s (triclocarban) and 1960s (triclosan), and peaking in the late 1960s and 1970s (24 +/- 0.54 and 0.8 +/- 0.4 mg/kg dry weight, respectively). In CB, where the time of sediment accumulation was not as well constrained by 137Cs depth profiles, triclocarban was only measurable in 137Cs-bearing sediments, peaking at 3.6 +/- 0.6 mg/ kg midway through the core and exceeding 1 mg/kg in recent deposits. In contrast, triclosan concentrations were low or not detectable in the CB core. Analysis of CB sediment by tandem mass spectrometry produced the first evidence for complete sequential dechlorination of triclocarban to the transformation products dichloro-, monochloro-, and unsubstituted carbanilide, which were detected at maxima of 15.5 +/- 1.8, 4.1 +/- 2.4, and 0.5 +/- 0.1 mg/kg, respectively. Concentrations of all carbanilide congeners combined were correlated with heavy metals (R2 > 0.64, P < 0.01), thereby identifying wastewater as the principal pathway of contamination. Environmental persistence over the past 40 years was observed for triclosan and triclocarban in JB, and for triclocarban's diphenylurea backbone in CB sediments.


Asunto(s)
Carbanilidas/química , Cloro/química , Sedimentos Geológicos/química , Triclosán/química , Radioisótopos de Cesio/química , Oxidación-Reducción
20.
Chemosphere ; 71(3): 500-6, 2008 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-18023841

RESUMEN

Managers of human biosolids have been incorporating the practice of waste pelletization for use as fertilizer since the mid 1920s, and waste pelletization has recently been embraced by some poultry producers as a way to move nutrients away from saturated agricultural land. However, the presence of arsenic in pelletized poultry house waste (PPHW) resulting from the use of organoarsenical antimicrobial drugs in poultry production raises concerns regarding additional incremental population exposures. Arsenic concentrations were determined in PPHW and pelletized biosolids fertilizer (PBF) samples. Pellets were processed using strong acid microwave digestion and analyzed by graphite furnace atomic absorption spectroscopy. The mean arsenic concentration in PPHW (20.1 ppm) fell within the lower part of the range of previously report arsenic concentrations in unpelletized poultry house waste. Arsenic concentrations in PBF, the source of which is less clear than for PPHW, were approximately a factor of 5 times lower than those in PPHW, with a mean concentration of 4.1 ppm. The pelletization and sale of these biological waste fertilizers present new pathways of exposure to arsenic in consumer populations who would otherwise not come into contact with these wastes. Arsenic exposures in humans resulting from use of these fertilizer pellets should be quantified to avoid potential unintended negative consequences of managing wastes through pelletization.


Asunto(s)
Arsénico/análisis , Fertilizantes/análisis , Estiércol/análisis , Eliminación de Residuos Líquidos , Animales , Monitoreo del Ambiente , Humanos , Aves de Corral
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA