Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Base de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Nat Commun ; 15(1): 7771, 2024 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-39237528

RESUMEN

Alkaline metal sulfur (AMS) batteries offer a promising solution for grid-level energy storage due to their low cost and long cycle life. However, the formation of solid compounds such as M2S2 and M2S (M = Na, K) during cycling limits their performance. Here we unveil intermediate-temperature K-Na/S batteries utilizing advanced electrolytes that dissolve all polysulfides and sulfides (K2Sx, x = 1-8), significantly enhancing reaction kinetics, specific capacity, and energy density. These batteries achieve near-theoretical capacity (1655 mAh g-1 sulfur) at 75 °C with a 1 M sulfur concentration. At a 4 M sulfur concentration, they deliver 830 mAh g-1 at 2 mA cm-2, retaining 71% capacity after 1000 cycles. This new K-Na/S battery with specific energy of 150-250 Wh kg-1 only employs earth-abundant elements, making it attractive for long-duration energy storage.

2.
ACS Nano ; 17(15): 14930-14942, 2023 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-37505191

RESUMEN

The development of aqueous zinc-ion batteries (AZIBs) faces significant challenges because of water-induced side reactions arising from the high water activity in aqueous electrolytes. Herein, a quasi-solid-state electrolyte membrane with low water activity is designed based on a laponite (LP) nanoclay for separator-free AZIBs. The mechanically robust LP-based membrane can perform simultaneously as a separator and a quasi-solid-state electrolyte to inhibit dendrite growth and water-induced side reactions at the Zn/electrolyte interface. A combination of density functional theory calculations, theoretical analyses, and experiments ascertains that the water activities associated with self-dissociation, byproduct formation, and electrochemical decomposition could be substantially suppressed when the water molecules are absorbed by LP. This could be attributed to the high water adsorption and hydration capabilities of LP nanocrystals, resulting from the strong Coulombic and hydrogen-binding interactions between water and LP. Most importantly, the separator-free AZIBs exhibit high capacity retention rates of 94.10% after 2,000 cycles at 1 A/g and 86.32% after 10,000 cycles at 3 A/g, along with enhanced durability and record-low voltage decay rates over a 60-day storage period. This work provides a fundamental understanding of water activity and demonstrates that LP nanoclay is promising for ultrastable separator-free AZIBs for practical energy storage applications.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA