Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Más filtros

Base de datos
Tipo del documento
Intervalo de año de publicación
1.
J Neurodev Disord ; 15(1): 22, 2023 07 26.
Artículo en Inglés | MEDLINE | ID: mdl-37495977

RESUMEN

BACKGROUND: Angelman syndrome (AS) is a rare neurodevelopmental disorder characterized by the absence of a functional UBE3A gene, which causes developmental, behavioral, and medical challenges. While currently untreatable, comprehensive data could help identify appropriate endpoints assessing meaningful improvements in clinical trials. Herein are reported the results from the FREESIAS study assessing the feasibility and utility of in-clinic and at-home measures of key AS symptoms. METHODS: Fifty-five individuals with AS (aged < 5 years: n = 16, 5-12 years: n = 27, ≥ 18 years: n = 12; deletion genotype: n = 40, nondeletion genotype: n = 15) and 20 typically developing children (aged 1-12 years) were enrolled across six USA sites. Several clinical outcome assessments and digital health technologies were tested, together with overnight 19-lead electroencephalography (EEG) and additional polysomnography (PSG) sensors. Participants were assessed at baseline (Clinic Visit 1), 12 months later (Clinic Visit 2), and during intermittent home visits. RESULTS: The participants achieved high completion rates for the clinical outcome assessments (adherence: 89-100% [Clinic Visit 1]; 76-91% [Clinic Visit 2]) and varied feasibility of and adherence to digital health technologies. The coronavirus disease 2019 (COVID-19) pandemic impacted participants' uptake of and/or adherence to some measures. It also potentially impacted the at-home PSG/EEG recordings, which were otherwise feasible. Participants achieved Bayley-III results comparable to the available natural history data, showing similar scores between individuals aged ≥ 18 and 5-12 years. Also, participants without a deletion generally scored higher on most clinical outcome assessments than participants with a deletion. Furthermore, the observed AS EEG phenotype of excess delta-band power was consistent with prior reports. CONCLUSIONS: Although feasible clinical outcome assessments and digital health technologies are reported herein, further improved assessments of meaningful AS change are needed. Despite the COVID-19 pandemic, remote assessments facilitated high adherence levels and the results suggested that at-home PSG/EEG might be a feasible alternative to the in-clinic EEG assessments. Taken altogether, the combination of in-clinic/at-home clinical outcome assessments, digital health technologies, and PSG/EEG may improve protocol adherence, reduce patient burden, and optimize study outcomes in AS and other rare disease populations.


Asunto(s)
Síndrome de Angelman , COVID-19 , Humanos , Síndrome de Angelman/complicaciones , Estudios Prospectivos , Pandemias , Electroencefalografía
2.
Mol Ther Nucleic Acids ; 28: 514-529, 2022 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-35592499

RESUMEN

Angelman syndrome (AS) is a severe neurodevelopmental disorder featuring ataxia, cognitive impairment, and drug-resistant epilepsy. AS is caused by mutations or deletion of the maternal copy of the paternally imprinted UBE3A gene, with current precision therapy approaches focusing on re-expression of UBE3A. Certain phenotypes, however, are difficult to rescue beyond early development. Notably, a cluster of microRNA binding sites was reported in the untranslated Ube3a1 transcript, including for miR-134, suggesting that AS may be associated with microRNA dysregulation. Here, we report levels of miR-134 and key targets are normal in the hippocampus of mice carrying a maternal deletion of Ube3a (Ube3a m-/p+ ). Nevertheless, intracerebroventricular injection of an antimiR oligonucleotide inhibitor of miR-134 (Ant-134) reduced audiogenic seizure severity over multiple trials in 21- and 42-day-old AS mice. Interestingly, Ant-134 also improved distance traveled and center crossings of AS mice in the open-field test. Finally, we show that silencing miR-134 can upregulate targets of miR-134 in neurons differentiated from Angelman patient-derived induced pluripotent stem cells. These findings indicate that silencing miR-134 and possibly other microRNAs could be useful to treat clinically relevant phenotypes with a later developmental window in AS.

3.
JCI Insight ; 6(15)2021 08 09.
Artículo en Inglés | MEDLINE | ID: mdl-34369389

RESUMEN

Angelman syndrome (AS) is a severe neurodevelopmental disorder for which only symptomatic treatment with limited benefits is available. AS is caused by mutations affecting the maternally inherited ubiquitin protein ligase E3A (UBE3A) gene. Previous studies showed that the silenced paternal Ube3a gene can be activated by targeting the antisense Ube3a-ATS transcript. We investigated antisense oligonucleotide-induced (ASO-induced) Ube3a-ATS degradation and its ability to induce UBE3A reinstatement and rescue of AS phenotypes in an established Ube3a mouse model. We found that a single intracerebroventricular injection of ASOs at postnatal day 1 (P1) or P21 in AS mice resulted in potent and specific UBE3A reinstatement in the brain, with levels up to 74% of WT levels in the cortex and a full rescue of sensitivity to audiogenic seizures. AS mice treated with ASO at P1 also showed rescue of established AS phenotypes, such as open field and forced swim test behaviors, and significant improvement on the reversed rotarod. Hippocampal plasticity of treated AS mice was comparable to WT but not significantly different from PBS-treated AS mice. No rescue was observed for the marble burying and nest building phenotypes. Our findings highlight the promise of ASO-mediated reactivation of UBE3A as a disease-modifying treatment for AS.


Asunto(s)
Síndrome de Angelman , Oligonucleótidos Antisentido/uso terapéutico , Ubiquitina-Proteína Ligasas/metabolismo , Síndrome de Angelman/genética , Síndrome de Angelman/metabolismo , Animales , Variación Biológica Poblacional , Modelos Animales de Enfermedad , Perfilación de la Expresión Génica , Silenciador del Gen , Ratones , Reparación del Gen Blanco/métodos , Resultado del Tratamiento
4.
Elife ; 102021 07 14.
Artículo en Inglés | MEDLINE | ID: mdl-34259631

RESUMEN

Tuberous sclerosis complex (TSC) is a genetic disorder that is associated with multiple neurological manifestations. Previously, we demonstrated that Tsc1 loss in cerebellar Purkinje cells (PCs) can cause altered social behavior in mice. Here, we performed detailed transcriptional and translational analyses of Tsc1-deficient PCs to understand the molecular alterations in these cells. We found that target transcripts of the Fragile X Mental Retardation Protein (FMRP) are reduced in mutant PCs with evidence of increased degradation. Surprisingly, we observed unchanged ribosomal binding for many of these genes using translating ribosome affinity purification. Finally, we found that multiple FMRP targets, including SHANK2, were reduced, suggesting that compensatory increases in ribosomal binding efficiency may be unable to overcome reduced transcript levels. These data further implicate dysfunction of FMRP and its targets in TSC and suggest that treatments aimed at restoring the function of these pathways may be beneficial.


Asunto(s)
Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil/genética , Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil/metabolismo , Células de Purkinje/metabolismo , Proteína 1 del Complejo de la Esclerosis Tuberosa/genética , Proteína 1 del Complejo de la Esclerosis Tuberosa/metabolismo , Animales , Modelos Animales de Enfermedad , Expresión Génica , Ratones , Proteínas del Tejido Nervioso/metabolismo , Ribosomas/metabolismo , Esclerosis Tuberosa/genética , Esclerosis Tuberosa/metabolismo
6.
Sci Rep ; 11(1): 340, 2021 01 11.
Artículo en Inglés | MEDLINE | ID: mdl-33431894

RESUMEN

MicroRNAs are short non-coding RNAs that negatively regulate protein levels and perform important roles in establishing and maintaining neuronal network function. Previous studies in adult rodents have detected upregulation of microRNA-134 after prolonged seizures (status epilepticus) and demonstrated that silencing microRNA-134 using antisense oligonucleotides, termed antagomirs, has potent and long-lasting seizure-suppressive effects. Here we investigated whether targeting microRNA-134 can reduce or delay acute seizures in the immature brain. Status epilepticus was induced in 21 day-old (P21) male mice by systemic injection of 5 mg/kg kainic acid. This triggered prolonged electrographic seizures and select bilateral neuronal death within the CA3 subfield of the hippocampus. Expression of microRNA-134 and functional loading to Argonaute-2 was not significantly changed in the hippocampus after seizures in the model. Nevertheless, when levels of microRNA-134 were reduced by prior intracerebroventricular injection of an antagomir, kainic acid-induced seizures were delayed and less severe and mice displayed reduced neuronal death in the hippocampus. These studies demonstrate targeting microRNA-134 may have therapeutic applications for the treatment of seizures in children.


Asunto(s)
Antagomirs/farmacología , Ácido Kaínico/farmacología , MicroARNs/genética , Convulsiones/inducido químicamente , Convulsiones/genética , Animales , Antagomirs/uso terapéutico , Encéfalo/efectos de los fármacos , Encéfalo/metabolismo , Relación Dosis-Respuesta a Droga , Masculino , Ratones , Convulsiones/tratamiento farmacológico
7.
Child Psychiatry Hum Dev ; 52(4): 654-668, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-32880036

RESUMEN

Angelman syndrome (AS) is a complex, heterogeneous, and life-long neurodevelopmental disorder. Despite the considerable impact on individuals and caregivers, no disease-modifying treatments are available. To support holistic clinical management and the development of AS-specific outcome measures for clinical studies, we conducted primary and secondary research identifying the impact of symptoms on individuals with AS and their unmet need. This qualitative research adopted a rigorous step-wise approach, aggregating information from published literature, then evaluating it via disease concept elicitation interviews with clinical experts and caregivers. We found that the AS-defining concepts most relevant for treatment included: impaired expressive communication, seizures, maladaptive behavior, cognitive impairment, motor function difficulties, sleep disturbance, and limited self-care abilities. We highlight the relevance of age in experiencing these key AS concepts, and the difference between the perceptions of clinicians and caregivers towards the syndrome. Finally, we outline the impact of AS on individuals, caregivers, and families.


Asunto(s)
Síndrome de Angelman , Cuidadores , Humanos , Modelos Teóricos , Atención Dirigida al Paciente , Investigación Cualitativa
8.
Mol Psychiatry ; 26(7): 3625-3633, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-32792659

RESUMEN

Angelman Syndrome (AS) is a severe neurodevelopmental disorder due to impaired expression of UBE3A in neurons. There are several genetic mechanisms that impair UBE3A expression, but they differ in how neighboring genes on chromosome 15 at 15q11-q13 are affected. There is evidence that different genetic subtypes present with different clinical severity, but a systematic quantitative investigation is lacking. Here we analyze natural history data on a large sample of individuals with AS (n = 250, 848 assessments), including clinical scales that quantify development of motor, cognitive, and language skills (Bayley Scales of Infant Development, Third Edition; Preschool Language Scale, Fourth Edition), adaptive behavior (Vineland Adaptive Behavioral Scales, Second Edition), and AS-specific symptoms (AS Clinical Severity Scale). We found that clinical severity, as captured by these scales, differs between genetic subtypes: individuals with UBE3A pathogenic variants and imprinting defects (IPD) are less affected than individuals with uniparental paternal disomy (UPD); of those with UBE3A pathogenic variants, individuals with truncating mutations are more impaired than those with missense mutations. Individuals with a deletion that encompasses UBE3A and other genes are most impaired, but in contrast to previous work, we found little evidence for an influence of deletion length (class I vs. II) on severity of manifestations. The results of this systematic analysis highlight the relevance of genomic regions beyond UBE3A as contributing factors in the AS phenotype, and provide important information for the development of new therapies for AS. More generally, this work exemplifies how increasing genetic irregularities are reflected in clinical severity.


Asunto(s)
Síndrome de Angelman , Síndrome de Angelman/genética , Cromosomas Humanos Par 15 , Impresión Genómica/genética , Genotipo , Humanos , Fenotipo , Ubiquitina-Proteína Ligasas/genética
9.
Elife ; 92020 03 16.
Artículo en Inglés | MEDLINE | ID: mdl-32167471

RESUMEN

Ion selectivity is a defining feature of a given ion channel and is considered immutable. Here we show that ion selectivity of the lysosomal ion channel TPC2, which is hotly debated (Calcraft et al., 2009; Guo et al., 2017; Jha et al., 2014; Ruas et al., 2015; Wang et al., 2012), depends on the activating ligand. A high-throughput screen identified two structurally distinct TPC2 agonists. One of these evoked robust Ca2+-signals and non-selective cation currents, the other weaker Ca2+-signals and Na+-selective currents. These properties were mirrored by the Ca2+-mobilizing messenger, NAADP and the phosphoinositide, PI(3,5)P2, respectively. Agonist action was differentially inhibited by mutation of a single TPC2 residue and coupled to opposing changes in lysosomal pH and exocytosis. Our findings resolve conflicting reports on the permeability and gating properties of TPC2 and they establish a new paradigm whereby a single ion channel mediates distinct, functionally-relevant ionic signatures on demand.


Asunto(s)
Agonistas de los Canales de Calcio/farmacología , Canales de Calcio/metabolismo , Macrófagos/metabolismo , Clorhidrato de Raloxifeno/farmacología , Animales , Bencilisoquinolinas/farmacología , Calcio/metabolismo , Agonistas de los Canales de Calcio/química , Canales de Calcio/genética , Flufenazina/farmacología , Regulación de la Expresión Génica/efectos de los fármacos , Células HEK293 , Células HeLa , Humanos , Ionomicina/farmacología , Macrófagos/efectos de los fármacos , Ratones , NADP/análogos & derivados , NADP/metabolismo , Fosfatos de Fosfatidilinositol/farmacología , Imagen Individual de Molécula , Sodio/metabolismo
10.
Biol Psychiatry ; 85(9): 752-759, 2019 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-30826071

RESUMEN

BACKGROUND: Angelman syndrome (AS) is a severe neurodevelopmental disorder caused by either disruptions of the gene UBE3A or deletion of chromosome 15 at 15q11-q13, which encompasses UBE3A and several other genes, including GABRB3, GABRA5, GABRG3, encoding gamma-aminobutyric acid type A receptor subunits (ß3, α5, γ3). Individuals with deletions are generally more impaired than those with other genotypes, but the underlying pathophysiology remains largely unknown. Here, we used electroencephalography (EEG) to test the hypothesis that genes other than UBE3A located on 15q11-q13 cause differences in pathophysiology between AS genotypes. METHODS: We compared spectral power of clinical EEG recordings from children (1-18 years of age) with a deletion genotype (n = 37) or a nondeletion genotype (n = 21) and typically developing children without Angelman syndrome (n = 48). RESULTS: We found elevated theta power (peak frequency: 5.3 Hz) and diminished beta power (peak frequency: 23 Hz) in the deletion genotype compared with the nondeletion genotype as well as excess broadband EEG power (1-32 Hz) peaking in the delta frequency range (peak frequency: 2.8 Hz), shared by both genotypes but stronger for the deletion genotype at younger ages. CONCLUSIONS: Our results provide strong evidence for the contribution of non-UBE3A neuronal pathophysiology in deletion AS and suggest that hemizygosity of the GABRB3-GABRA5-GABRG3 gene cluster causes abnormal theta and beta EEG oscillations that may underlie the more severe clinical phenotype. Our work improves the understanding of AS pathophysiology and has direct implications for the development of AS treatments and biomarkers.


Asunto(s)
Síndrome de Angelman/genética , Síndrome de Angelman/fisiopatología , Ondas Encefálicas , Corteza Cerebral/fisiopatología , Adolescente , Ritmo beta , Niño , Preescolar , Ritmo Delta , Electroencefalografía , Genotipo , Humanos , Lactante , Fenotipo , Ritmo Teta
11.
PLoS One ; 14(2): e0212553, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30789962

RESUMEN

Rett syndrome (RTT) is a pervasive developmental disorder caused by mutations in MECP2. Complete loss of MECP2 function in males causes congenital encephalopathy, neurodevelopmental arrest, and early lethality. Induced pluripotent stem cell (iPSC) lines from male patients harboring mutations in MECP2, along with control lines from their unaffected fathers, give us an opportunity to identify some of the earliest cellular and molecular changes associated with MECP2 loss-of-function (LOF). We differentiated iPSC-derived neural progenitor cells (NPCs) using retinoic acid (RA) and found that astrocyte differentiation is perturbed in iPSC lines derived from two different patients. Using highly stringent quantitative proteomic analyses, we found that LIN28, a gene important for cell fate regulation and developmental timing, is upregulated in mutant NPCs compared to WT controls. Overexpression of LIN28 protein in control NPCs suppressed astrocyte differentiation and reduced neuronal synapse density, whereas downregulation of LIN28 expression in mutant NPCs partially rescued this synaptic deficiency. These results indicate that the pathophysiology of RTT may be caused in part by misregulation of developmental timing in neural progenitors, and the subsequent consequences of this disruption on neuronal and glial differentiation.


Asunto(s)
Células Madre Pluripotentes Inducidas/citología , Proteína 2 de Unión a Metil-CpG/genética , Neuroglía/citología , Proteínas de Unión al ARN/genética , Diferenciación Celular , Línea Celular , Femenino , Regulación del Desarrollo de la Expresión Génica , Humanos , Células Madre Pluripotentes Inducidas/metabolismo , Mutación con Pérdida de Función , Masculino , Células-Madre Neurales/citología , Células-Madre Neurales/metabolismo , Neuroglía/metabolismo , Proteómica
12.
Brain ; 142(2): 239-248, 2019 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-30649225

RESUMEN

With the recent 50th anniversary of the first publication on Rett syndrome, and the almost 20 years since the first report on the link between Rett syndrome and MECP2 mutations, it is important to reflect on the tremendous advances in our understanding and their implications for the diagnosis and treatment of this neurodevelopmental disorder. Rett syndrome features an interesting challenge for biologists and clinicians, as the disorder lies at the intersection of molecular mechanisms of epigenetic regulation and neurophysiological alterations in synapses and circuits that together contribute to severe pathophysiological endophenotypes. Genetic, clinical, and neurobiological evidences support the notion that Rett syndrome is primarily a synaptic disorder, and a disease model for both intellectual disability and autism spectrum disorder. This review examines major developments in both recent neurobiological and preclinical findings of Rett syndrome, and to what extent they are beginning to impact our understanding and management of the disorder. It also discusses potential applications of knowledge on synaptic plasticity abnormalities in Rett syndrome to its diagnosis and treatment.


Asunto(s)
Plasticidad Neuronal/fisiología , Síndrome de Rett/diagnóstico , Síndrome de Rett/terapia , Sinapsis/metabolismo , Humanos , Proteína 2 de Unión a Metil-CpG/genética , Síndrome de Rett/genética , Síndrome de Rett/metabolismo , Sinapsis/patología , Resultado del Tratamiento
13.
Proteomics Clin Appl ; 9(7-8): 684-94, 2015 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-25684324

RESUMEN

PURPOSE: Human pluripotent stem cell (hPSC)-derived cellular models have great potential to enable drug discovery and improve translation of preclinical insights to the clinic. We have developed a hPSC-derived neural precursor cell model for studying early events in human brain development. We present protein-level characterization of this model, using a multiplexed SRM approach, to establish reproducibility and physiological relevance; essential prerequisites for utilization of the neuronal development model in phenotypic screening-based drug discovery. EXPERIMENTAL DESIGN: Profiles of 246 proteins across three key stages of in vitro neuron differentiation were analyzed by SRM. Three independently hPSC-derived isogenic neural stem cell (NSC) lines were analyzed across five to nine independent neuronal differentiations. RESULTS: One hundred seventy-five proteins were reliably quantified revealing a time-dependent pattern of protein regulation that reflected protein dynamics during in vivo brain development and that was conserved across replicate differentiations and multiple cell lines. CONCLUSIONS AND CLINICAL RELEVANCE: SRM-based protein profiling enabled establishment of the reproducibility and physiological relevance of the hPSC-derived neuronal model. Combined with the successful quantification of proteins relevant to neurodevelopmental diseases, this validates the platform for use as a model to enable neuroscience drug discovery.


Asunto(s)
Neuronas/citología , Neuronas/metabolismo , Células Madre Pluripotentes/citología , Células Madre Pluripotentes/metabolismo , Proteómica/métodos , Diferenciación Celular , Línea Celular , Análisis por Conglomerados , Humanos , Modelos Biológicos , Análisis de Componente Principal , Factores de Tiempo
14.
J Biol Chem ; 287(24): 19816-26, 2012 Jun 08.
Artículo en Inglés | MEDLINE | ID: mdl-22528485

RESUMEN

Normal glucose-stimulated insulin secretion is dependent on interactions between neighboring ß cells. Elucidation of the reasons why this cell-to-cell contact is essential will probably yield critical insights into ß cell maturation and function. In the central nervous system, transcellular protein interactions (i.e. interactions between proteins on the surfaces of different cells) involving neuroligins are key mediators of synaptic functional development. We previously demonstrated that ß cells express neuroligin-2 and that insulin secretion is affected by changes in neuroligin-2 expression. Here we show that the effect of neuroligin-2 on insulin secretion is mediated by transcellular interactions. Neuroligin-2 binds with nanomolar affinity to a partner on the ß cell surface and contributes to the increased insulin secretion brought about by ß cell-to-ß cell contact. It does so in a manner seemingly independent of interactions with neurexin, a known binding partner. As in the synapse, transcellular neuroligin-2 interactions enhance the functioning of the submembrane exocytic machinery. Also, as in the synapse, neuroligin-2 clustering is important. Neuroligin-2 in soluble form, rather than presented on a cell surface, decreases insulin secretion by rat islets and MIN-6 cells, most likely by interfering with endogenous neuroligin interactions. Prolonged contact with neuroligin-2-expressing cells increases INS-1 ß cell proliferation and insulin content. These results extend the known parallels between the synaptic and ß cell secretory machineries to extracellular interactions. Neuroligin-2 interactions are one of the few transcellular protein interactions thus far identified that directly enhance insulin secretion. Together, these results indicate a significant role for transcellular neuroligin-2 interactions in the establishment of ß cell function.


Asunto(s)
Moléculas de Adhesión Celular Neuronal/metabolismo , Comunicación Celular/fisiología , Proliferación Celular , Regulación de la Expresión Génica/fisiología , Células Secretoras de Insulina/metabolismo , Insulina/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Animales , Moléculas de Adhesión Celular Neuronal/genética , Células HEK293 , Humanos , Secreción de Insulina , Células Secretoras de Insulina/citología , Proteínas del Tejido Nervioso/genética , Ratas , Ratas Sprague-Dawley
15.
Structure ; 19(6): 767-78, 2011 Jun 08.
Artículo en Inglés | MEDLINE | ID: mdl-21620717

RESUMEN

α- and ß-neurexins (NRXNs) are transmembrane cell adhesion proteins that localize to presynaptic membranes in neurons and interact with the postsynaptic neuroligins (NLGNs). Their gene mutations are associated with the autism spectrum disorders. The extracellular region of α-NRXNs, containing nine independently folded domains, has structural complexity and unique functional characteristics, distinguishing it from the smaller ß-NRXNs. We have solved the X-ray crystal structure of seven contiguous domains of the α-NRXN-1 extracellular region at 3.0 Å resolution. The structure reveals an arrangement where the N-terminal five domains adopt a more rigid linear conformation and the two C-terminal domains form a separate arm connected by a flexible hinge. In an extended conformation the molecule is suitably configured to accommodate a bound NLGN molecule, as supported by structural comparison and surface plasmon resonance. These studies provide the structural basis for a multifunctional synaptic adhesion complex mediated by α-NRXN-1.


Asunto(s)
Moléculas de Adhesión Celular Neuronal/química , Receptores de Superficie Celular/química , Proteínas Recombinantes/química , Sinapsis/química , Secuencia de Aminoácidos , Animales , Sitios de Unión , Calcio/química , Bovinos , Moléculas de Adhesión Celular Neuronal/fisiología , Cristalografía por Rayos X , Glicosilación , Células HEK293 , Humanos , Modelos Moleculares , Unión Proteica , Isoformas de Proteínas/química , Estructura Terciaria de Proteína , Resonancia por Plasmón de Superficie
16.
Structure ; 18(8): 1044-53, 2010 Aug 11.
Artículo en Inglés | MEDLINE | ID: mdl-20696403

RESUMEN

Neurexins are multidomain synaptic cell-adhesion proteins that associate with multiple partnering proteins. Genetic evidence indicates that neurexins may contribute to autism, schizophrenia, and nicotine dependence. Using analytical ultracentrifugation, single-particle electron microscopy, and solution X-ray scattering, we obtained a three-dimensional structural model of the entire extracellular domain of neurexin-1alpha. This protein adopts a dimensionally asymmetric conformation that is monomeric in solution, with a maximum dimension of approximately 170 A. The extracellular domain of alpha-neurexin maintains a characteristic "Y" shape, whereby LNS domains 1-4 form an extended base of the "Y" and LNS5-6 the shorter arms. Moreover, two major regions of flexibility are present: one between EGF1 and LNS2, corresponding to splice site 1, another between LNS5 and 6. We thus provide the first structural insights into the architecture of the extracellular region of neurexin-1alpha, show how the protein may fit in the synaptic cleft, and how partnering proteins could bind simultaneously.


Asunto(s)
Moléculas de Adhesión Celular Neuronal/química , Modelos Moleculares , Proteínas del Tejido Nervioso/química , Conformación Proteica , Estructura Terciaria de Proteína , Sinapsis/metabolismo , Proteínas de Unión al Calcio , Humanos , Microscopía Electrónica , Moléculas de Adhesión de Célula Nerviosa , Ultracentrifugación , Difracción de Rayos X
17.
J Biol Chem ; 285(37): 28674-82, 2010 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-20615874

RESUMEN

Despite great functional diversity, characterization of the alpha/beta-hydrolase fold proteins that encompass a superfamily of hydrolases, heterophilic adhesion proteins, and chaperone domains reveals a common structural motif. By incorporating the R451C mutation found in neuroligin (NLGN) and associated with autism and the thyroglobulin G2320R (G221R in NLGN) mutation responsible for congenital hypothyroidism into NLGN3, we show that mutations in the alpha/beta-hydrolase fold domain influence folding and biosynthetic processing of neuroligin3 as determined by in vitro susceptibility to proteases, glycosylation processing, turnover, and processing rates. We also show altered interactions of the mutant proteins with chaperones in the endoplasmic reticulum and arrest of transport along the secretory pathway with diversion to the proteasome. Time-controlled expression of a fluorescently tagged neuroligin in hippocampal neurons shows that these mutations compromise neuronal trafficking of the protein, with the R451C mutation reducing and the G221R mutation virtually abolishing the export of NLGN3 from the soma to the dendritic spines. Although the R451C mutation causes a local folding defect, the G221R mutation appears responsible for more global misfolding of the protein, reflecting their sequence positions in the structure of the protein. Our results suggest that disease-related mutations in the alpha/beta-hydrolase fold domain share common trafficking deficiencies yet lead to discrete congenital disorders of differing severity in the endocrine and nervous systems.


Asunto(s)
Moléculas de Adhesión Celular Neuronal/metabolismo , Dendritas/metabolismo , Hipocampo/metabolismo , Proteínas de la Membrana/metabolismo , Mutación Missense , Proteínas del Tejido Nervioso/metabolismo , Pliegue de Proteína , Procesamiento Proteico-Postraduccional , Secuencias de Aminoácidos , Sustitución de Aminoácidos , Animales , Trastorno Autístico/genética , Trastorno Autístico/metabolismo , Moléculas de Adhesión Celular Neuronal/genética , Línea Celular , Hipotiroidismo Congénito/genética , Hipotiroidismo Congénito/metabolismo , Humanos , Hidrolasas , Proteínas de la Membrana/genética , Proteínas del Tejido Nervioso/genética , Estructura Terciaria de Proteína , Transporte de Proteínas/genética , Ratas
18.
Neuron ; 56(6): 979-91, 2007 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-18093521

RESUMEN

The neuroligins are postsynaptic cell adhesion proteins whose associations with presynaptic neurexins participate in synaptogenesis. Mutations in the neuroligin and neurexin genes appear to be associated with autism and mental retardation. The crystal structure of a neuroligin reveals features not found in its catalytically active relatives, such as the fully hydrophobic interface forming the functional neuroligin dimer; the conformations of surface loops surrounding the vestigial active center; the location of determinants that are critical for folding and processing; and the absence of a macromolecular dipole and presence of an electronegative, hydrophilic surface for neurexin binding. The structure of a beta-neurexin-neuroligin complex reveals the precise orientation of the bound neurexin and, despite a limited resolution, provides substantial information on the Ca2+-dependent interactions network involved in trans-synaptic neurexin-neuroligin association. These structures exemplify how an alpha/beta-hydrolase fold varies in surface topography to confer adhesion properties and provide templates for analyzing abnormal processing or recognition events associated with autism.


Asunto(s)
Carotenoides/química , Carotenoides/fisiología , Adhesión Celular/fisiología , Proteínas de la Membrana/química , Proteínas de la Membrana/fisiología , Pliegue de Proteína , Animales , Calcio/metabolismo , Línea Celular Transformada , Humanos , Modelos Moleculares , Datos de Secuencia Molecular , Mutación , Unión Proteica/fisiología , Estructura Terciaria de Proteína , Ratas , Proteínas Recombinantes/metabolismo , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción , Transfección/métodos
20.
Cancer Res ; 64(19): 7039-44, 2004 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-15466197

RESUMEN

Multiple endocrine neoplasia, type I (MEN1) is an inherited cancer syndrome characterized by tumors arising primarily in endocrine tissues. The responsible gene acts as a tumor suppressor, and tumors in affected heterozygous individuals occur after inactivation of the wild-type allele. Previous studies have shown that Men1 knockout mice develop multiple pancreatic insulinomas, but this occurs many months after loss of both copies of the Men1 gene. These studies imply that loss of Men1 is not alone sufficient for tumor formation and that additional somatic genetic changes are most likely essential for tumorigenesis. The usual expectation is that such mutations would arise either by a chromosomal instability or microsatellite instability mechanism. In a study of more then a dozen such tumors, using the techniques of array-based comparative genomic hybridization, fluorescent in situ hybridization, loss of heterozygosity analysis using multiple microsatellite markers across the genome, and real time PCR to assess DNA copy number, it appears that many of these full-blown clonal adenomas remain remarkably euploid. Furthermore, the loss of the wild-type Men1 allele in heterozygous Men1 mice occurs by loss and reduplication of the entire mutant-bearing chromosome. Thus, the somatic genetic changes that are postulated to lead to tumorigenesis in a mouse model of MEN1 must be unusually subtle, occurring at either the nucleotide level or through epigenetic mechanisms.


Asunto(s)
Inestabilidad Cromosómica , Insulinoma/genética , Neoplasia Endocrina Múltiple Tipo 1/genética , Neoplasias Pancreáticas/genética , Proteínas Proto-Oncogénicas/genética , Alelos , Animales , Femenino , Dosificación de Gen , Hibridación in Situ , Pérdida de Heterocigocidad , Masculino , Ratones , Ratones Noqueados , Repeticiones de Microsatélite/genética , Reacción en Cadena de la Polimerasa , Proteínas Proto-Oncogénicas/deficiencia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA