Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 55
Filtrar
Más filtros

Base de datos
Tipo del documento
Intervalo de año de publicación
1.
Psychiatry Res Neuroimaging ; 344: 111877, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39232266

RESUMEN

Many psychopathologies tied to internalizing symptomatology emerge during adolescence, therefore identifying neural markers of internalizing behavior in childhood may allow for early intervention. We utilized data from the Adolescent Brain and Cognitive Development (ABCD) Study® to evaluate associations between cortico-amygdalar functional connectivity, polygenic risk for depression (PRSD), traumatic events experienced, internalizing behavior, and internalizing subscales: withdrawn/depressed behavior, somatic complaints, and anxious/depressed behaviors. Data from 6371 children (ages 9-11) were used to analyze amygdala resting-state fMRI connectivity to Gordon parcellation based whole-brain regions of interest (ROIs). Internalizing behaviors were measured using the parent-reported Child Behavior Checklist. Linear mixed-effects models were used to identify patterns of cortico-amygdalar connectivity associated with internalizing behaviors. Results indicated left amygdala connections to auditory, frontoparietal network (FPN), and dorsal attention network (DAN) ROIs were significantly associated with withdrawn/depressed symptomatology. Connections relevant for withdrawn/depressed behavior were linked to social behaviors. Specifically, amygdala connections to DAN were associated with social anxiety, social impairment, and social problems. Additionally, an amygdala connection to the FPN ROI and the auditory network ROI was associated with social anxiety and social problems, respectively. Therefore, it may be important to account for social behaviors when looking for brain correlates of depression.


Asunto(s)
Amígdala del Cerebelo , Depresión , Imagen por Resonancia Magnética , Humanos , Amígdala del Cerebelo/diagnóstico por imagen , Amígdala del Cerebelo/fisiopatología , Niño , Masculino , Femenino , Depresión/diagnóstico por imagen , Depresión/fisiopatología , Depresión/psicología , Adolescente , Vías Nerviosas/fisiopatología , Vías Nerviosas/diagnóstico por imagen , Vías Nerviosas/crecimiento & desarrollo
2.
bioRxiv ; 2024 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-39131337

RESUMEN

The human cerebral cortex contains groups of areas that support sensory, motor, cognitive, and affective functions, often categorized as functional networks. These areas show stronger internal and weaker external functional connectivity (FC) and exhibit similar FC profiles within rather than between networks. Previous studies have demonstrated the development of these networks from nascent forms present before birth to their mature, adult-like topography in childhood. However, analyses often still use definitions based on adult functional networks. We aim to assess how this might lead to the misidentification of functional networks and explore potential consequences and solutions. Our findings suggest that even though adult networks provide only a marginally better than-chance description of the infant FC organization, misidentification was largely driven by specific areas. By restricting functional networks to areas showing adult-like network clustering, we observed consistent within-network FC both within and across scans and throughout development. Additionally, these areas were spatially closer to locations with low variability in network identity among adults. Our analysis aids in understanding the potential consequences of using adult networks "as is" and provides guidance for future research on selecting and utilizing functional network models based on the research question and scenario.

3.
Artículo en Inglés | MEDLINE | ID: mdl-39127423

RESUMEN

BACKGROUND: The prevalence of internalizing psychopathology rises precipitously from early to mid-adolescence, yet the underlying neural phenotypes that give rise to depression and anxiety during this developmental period remain unclear. METHODS: Youths from the Adolescent Brain Cognitive Development (ABCD) Study (ages 9-10 years at baseline) with a resting-state functional magnetic resonance imaging scan and mental health data were eligible for inclusion. Internalizing subscale scores from the Brief Problem Monitor-Youth Form were combined across 2 years of follow-up to generate a cumulative measure of internalizing symptoms. The total sample (N = 6521) was split into a large discovery dataset and a smaller validation dataset. Brain-behavior associations of resting-state functional connectivity with internalizing symptoms were estimated in the discovery dataset. The weighted contributions of each functional connection were aggregated using multivariate statistics to generate a polyneuro risk score (PNRS). The predictive power of the PNRS was evaluated in the validation dataset. RESULTS: The PNRS explained 10.73% of the observed variance in internalizing symptom scores in the validation dataset. Model performance peaked when the top 2% functional connections identified in the discovery dataset (ranked by absolute ß weight) were retained. The resting-state functional connectivity networks that were implicated most prominently were the default mode, dorsal attention, and cingulo-parietal networks. These findings were significant (p < 1 × 10-6) as accounted for by permutation testing (n = 7000). CONCLUSIONS: These results suggest that the neural phenotype associated with internalizing symptoms during adolescence is functionally distributed. The PNRS approach is a novel method for capturing relationships between resting-state functional connectivity and behavior.

4.
Dev Cogn Neurosci ; 68: 101400, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38870601

RESUMEN

BACKGROUND: There is an imminent need to identify neural markers during preadolescence that are linked to developing depression during adolescence, especially among youth at elevated familial risk. However, longitudinal studies remain scarce and exhibit mixed findings. Here we aimed to elucidate functional connectivity (FC) patterns among preadolescents that interact with familial depression risk to predict depression two years later. METHODS: 9-10 year-olds in the Adolescent Brain Cognitive Development (ABCD) Study were classified as healthy (i.e., no lifetime psychiatric diagnoses) at high familial risk for depression (HR; n=559) or at low familial risk for psychopathology (LR; n=1203). Whole-brain seed-to-voxel resting-state FC patterns with the amygdala, putamen, nucleus accumbens, and caudate were calculated. Multi-level, mixed-effects regression analyses were conducted to test whether FC at ages 9-10 interacted with familial risk to predict depression symptoms at ages 11-12. RESULTS: HR youth demonstrated stronger associations between preadolescent FC and adolescent depression symptoms (ps<0.001) as compared to LR youth (ps>0.001), primarily among amygdala/striatal FC with visual and sensory/somatomotor networks. CONCLUSIONS: Preadolescent amygdala and striatal FC may be useful biomarkers of adolescent-onset depression, particularly for youth with family histories of depression. This research may point to neurobiologically-informed approaches to prevention and intervention for depression in adolescents.


Asunto(s)
Encéfalo , Depresión , Imagen por Resonancia Magnética , Humanos , Niño , Masculino , Femenino , Imagen por Resonancia Magnética/métodos , Depresión/psicología , Adolescente , Estudios Longitudinales , Predisposición Genética a la Enfermedad , Vías Nerviosas , Amígdala del Cerebelo
5.
Dev Cogn Neurosci ; 66: 101370, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38583301

RESUMEN

Childhood environments are critical in shaping cognitive neurodevelopment. With the increasing availability of large-scale neuroimaging datasets with deep phenotyping of childhood environments, we can now build upon prior studies that have considered relationships between one or a handful of environmental and neuroimaging features at a time. Here, we characterize the combined effects of hundreds of inter-connected and co-occurring features of a child's environment ("exposome") and investigate associations with each child's unique, multidimensional pattern of functional brain network organization ("functional topography") and cognition. We apply data-driven computational models to measure the exposome and define personalized functional brain networks in pre-registered analyses. Across matched discovery (n=5139, 48.5% female) and replication (n=5137, 47.1% female) samples from the Adolescent Brain Cognitive Development study, the exposome was associated with current (ages 9-10) and future (ages 11-12) cognition. Changes in the exposome were also associated with changes in cognition after accounting for baseline scores. Cross-validated ridge regressions revealed that the exposome is reflected in functional topography and can predict performance across cognitive domains. Importantly, a single measure capturing a child's exposome could more accurately and parsimoniously predict cognition than a wealth of personalized neuroimaging data, highlighting the importance of children's complex, multidimensional environments in cognitive neurodevelopment.

7.
Nat Neurosci ; 27(5): 1000-1013, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38532024

RESUMEN

Although the general location of functional neural networks is similar across individuals, there is vast person-to-person topographic variability. To capture this, we implemented precision brain mapping functional magnetic resonance imaging methods to establish an open-source, method-flexible set of precision functional network atlases-the Masonic Institute for the Developing Brain (MIDB) Precision Brain Atlas. This atlas is an evolving resource comprising 53,273 individual-specific network maps, from more than 9,900 individuals, across ages and cohorts, including the Adolescent Brain Cognitive Development study, the Developmental Human Connectome Project and others. We also generated probabilistic network maps across multiple ages and integration zones (using a new overlapping mapping technique, Overlapping MultiNetwork Imaging). Using regions of high network invariance improved the reproducibility of executive function statistical maps in brain-wide associations compared to group average-based parcellations. Finally, we provide a potential use case for probabilistic maps for targeted neuromodulation. The atlas is expandable to alternative datasets with an online interface encouraging the scientific community to explore and contribute to understanding the human brain function more precisely.


Asunto(s)
Encéfalo , Conectoma , Imagen por Resonancia Magnética , Humanos , Imagen por Resonancia Magnética/métodos , Encéfalo/fisiología , Encéfalo/diagnóstico por imagen , Adolescente , Masculino , Femenino , Adulto , Adulto Joven , Red Nerviosa/fisiología , Red Nerviosa/diagnóstico por imagen , Mapeo Encefálico/métodos , Atlas como Asunto , Niño , Probabilidad , Vías Nerviosas/fisiología
8.
J Neurosci ; 44(10)2024 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-38286629

RESUMEN

Identification of replicable neuroimaging correlates of attention-deficit hyperactivity disorder (ADHD) has been hindered by small sample sizes, small effects, and heterogeneity of methods. Given evidence that ADHD is associated with alterations in widely distributed brain networks and the small effects of individual brain features, a whole-brain perspective focusing on cumulative effects is warranted. The use of large, multisite samples is crucial for improving reproducibility and clinical utility of brain-wide MRI association studies. To address this, a polyneuro risk score (PNRS) representing cumulative, brain-wide, ADHD-associated resting-state functional connectivity was constructed and validated using data from the Adolescent Brain Cognitive Development (ABCD, N = 5,543, 51.5% female) study, and was further tested in the independent Oregon-ADHD-1000 case-control cohort (N = 553, 37.4% female). The ADHD PNRS was significantly associated with ADHD symptoms in both cohorts after accounting for relevant covariates (p < 0.001). The most predictive PNRS involved all brain networks, though the strongest effects were concentrated among the default mode and cingulo-opercular networks. In the longitudinal Oregon-ADHD-1000, non-ADHD youth had significantly lower PNRS (Cohen's d = -0.318, robust p = 5.5 × 10-4) than those with persistent ADHD (age 7-19). The PNRS, however, did not mediate polygenic risk for ADHD. Brain-wide connectivity was robustly associated with ADHD symptoms in two independent cohorts, providing further evidence of widespread dysconnectivity in ADHD. Evaluation in enriched samples demonstrates the promise of the PNRS approach for improving reproducibility in neuroimaging studies and unraveling the complex relationships between brain connectivity and behavioral disorders.


Asunto(s)
Trastorno por Déficit de Atención con Hiperactividad , Adolescente , Humanos , Femenino , Niño , Adulto Joven , Adulto , Masculino , Trastorno por Déficit de Atención con Hiperactividad/diagnóstico por imagen , Mapeo Encefálico , Reproducibilidad de los Resultados , Encéfalo/diagnóstico por imagen , Cognición , Imagen por Resonancia Magnética , Vías Nerviosas/diagnóstico por imagen
9.
J Neurophysiol ; 131(2): 241-260, 2024 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-38197176

RESUMEN

Perinatal exposure to a high-fat, high-sugar Western-style diet (WSD) is associated with altered neural circuitry in the melanocortin system. This association may have an underlying inflammatory component, as consumption of a WSD during pregnancy can lead to an elevated inflammatory environment. Our group previously demonstrated that prenatal WSD exposure was associated with increased markers of inflammation in the placenta and fetal hypothalamus in Japanese macaques. In this follow-up study, we sought to determine whether this heightened inflammatory state persisted into the postnatal period, as prenatal exposure to inflammation has been shown to reprogram offspring immune function and long-term neuroinflammation would present a potential means for prolonged disruptions to microglia-mediated neuronal circuit formation. Neuroinflammation was approximated in 1-yr-old offspring by counting resident microglia and peripherally derived macrophages in the region of the hypothalamus examined in the fetal study, the arcuate nucleus (ARC). Microglia and macrophages were immunofluorescently stained with their shared marker, ionized calcium-binding adapter molecule 1 (Iba1), and quantified in 11 regions along the rostral-caudal axis of the ARC. A mixed-effects model revealed main effects of perinatal diet (P = 0.011) and spatial location (P = 0.003) on Iba1-stained cell count. Perinatal WSD exposure was associated with a slight decrease in the number of Iba1-stained cells, and cells were more densely located in the center of the ARC. These findings suggest that the heightened inflammatory state experienced in utero does not persist postnatally. This inflammatory response trajectory could have important implications for understanding how neurodevelopmental disorders progress.NEW & NOTEWORTHY Prenatal Western-style diet exposure is associated with increased microglial activity in utero. However, we found a potentially neuroprotective reduction in microglia count during early postnatal development. This trajectory could inform the timing of disruptions to microglia-mediated neuronal circuit formation. Additionally, this is the first study in juvenile macaques to characterize the distribution of microglia along the rostral-caudal axis of the arcuate nucleus of the hypothalamus. Nearby neuronal populations may be greater targets during inflammatory insults.


Asunto(s)
Núcleo Arqueado del Hipotálamo , Macaca fuscata , Embarazo , Animales , Femenino , Microglía , Enfermedades Neuroinflamatorias , Estudios de Seguimiento , Hipotálamo , Dieta Alta en Grasa/efectos adversos , Macaca
10.
bioRxiv ; 2024 Apr 14.
Artículo en Inglés | MEDLINE | ID: mdl-37398345

RESUMEN

Brain-wide association studies (BWAS) are a fundamental tool in discovering brain-behavior associations. Several recent studies showed that thousands of study participants are required to improve the replicability of BWAS because actual effect sizes are much smaller than those reported in smaller studies. Here, we perform analyses and meta-analyses of a robust effect size index (RESI) using 63 longitudinal and cross-sectional magnetic resonance imaging studies from the Lifespan Brain Chart Consortium (77,695 total scans) to demonstrate that optimizing study design is critical for improving standardized effect sizes and replicability in BWAS. A meta-analysis of brain volume associations with age indicates that BWAS with larger covariate variance have larger effect size estimates and that the longitudinal studies we examined have systematically larger standardized effect sizes than cross-sectional studies. We propose a cross-sectional RESI to adjust for the systematic difference in effect sizes between cross-sectional and longitudinal studies that allows investigators to quantify the benefit of conducting their study longitudinally. Analyzing age effects on global and regional brain measures from the United Kingdom Biobank and the Alzheimer's Disease Neuroimaging Initiative, we show that modifying longitudinal study design through sampling schemes to increase between-subject variability and adding a single additional longitudinal measurement per subject can improve effect sizes. However, evaluating these longitudinal sampling schemes on cognitive, psychopathology, and demographic associations with structural and functional brain outcome measures in the Adolescent Brain and Cognitive Development dataset shows that commonly used longitudinal models can, counterintuitively, reduce effect sizes. We demonstrate that the benefit of conducting longitudinal studies depends on the strengths of the between- and within-subject associations of the brain and non-brain measures. Explicitly modeling between- and within-subject effects avoids conflating the effects and allows optimizing effect sizes for them separately. These findings underscore the importance of considering study design features to improve the replicability of BWAS.

11.
Artículo en Inglés | MEDLINE | ID: mdl-37182734

RESUMEN

BACKGROUND: Family history of depression is a robust predictor of early-onset depression, which may confer risk through alterations in neural circuits that have been implicated in reward and emotional processing. These alterations may be evident in youths who are at familial risk for depression but who do not currently have depression. However, the identification of robust and replicable findings has been hindered by few studies and small sample sizes. In the current study, we sought to identify functional connectivity (FC) patterns associated with familial risk for depression. METHODS: Participants included healthy (i.e., no lifetime psychiatric diagnoses) youths at high familial risk for depression (HR) (n = 754; at least one parent with a history of depression) and healthy youths at low familial risk for psychiatric problems (LR) (n = 1745; no parental history of psychopathology) who were 9 to 10 years of age and from the Adolescent Brain Cognitive Development (ABCD) Study sample. We conducted whole-brain seed-to-voxel analyses to examine group differences in resting-state FC with the amygdala, caudate, nucleus accumbens, and putamen. We hypothesized that HR youths would exhibit global amygdala hyperconnectivity and striatal hypoconnectivity patterns primarily driven by maternal risk. RESULTS: HR youths exhibited weaker caudate-angular gyrus FC than LR youths (α = 0.04, Cohen's d = 0.17). HR youths with a history of maternal depression specifically exhibited weaker caudate-angular gyrus FC (α = 0.03, Cohen's d = 0.19) as well as weaker caudate-dorsolateral prefrontal cortex FC (α = 0.04, Cohen's d = 0.21) than LR youths. CONCLUSIONS: Weaker striatal connectivity may be related to heightened familial risk for depression, primarily driven by maternal history. Identifying brain-based markers of depression risk in youths can inform approaches to improving early detection, diagnosis, and treatment.


Asunto(s)
Encéfalo , Depresión , Humanos , Adolescente , Emociones , Cognición , Predisposición Genética a la Enfermedad
12.
bioRxiv ; 2023 Nov 21.
Artículo en Inglés | MEDLINE | ID: mdl-38045258

RESUMEN

Functional neuroimaging is an essential tool for neuroscience research. Pre-processing pipelines produce standardized, minimally pre-processed data to support a range of potential analyses. However, post-processing is not similarly standardized. While several options for post-processing exist, they tend not to support output from disparate pre-processing pipelines, may have limited documentation, and may not follow BIDS best practices. Here we present XCP-D, which presents a solution to these issues. XCP-D is a collaborative effort between PennLINC at the University of Pennsylvania and the DCAN lab at the University at Minnesota. XCP-D uses an open development model on GitHub and incorporates continuous integration testing; it is distributed as a Docker container or Singularity image. XCP-D generates denoised BOLD images and functional derivatives from resting-state data in either NifTI or CIFTI files, following pre-processing with fMRIPrep, HCP, and ABCD-BIDS pipelines. Even prior to its official release, XCP-D has been downloaded >3,000 times from DockerHub. Together, XCP-D facilitates robust, scalable, and reproducible post-processing of fMRI data.

13.
Nat Commun ; 14(1): 8411, 2023 Dec 18.
Artículo en Inglés | MEDLINE | ID: mdl-38110396

RESUMEN

Individual differences in cognition during childhood are associated with important social, physical, and mental health outcomes in adolescence and adulthood. Given that cortical surface arealization during development reflects the brain's functional prioritization, quantifying variation in the topography of functional brain networks across the developing cortex may provide insight regarding individual differences in cognition. We test this idea by defining personalized functional networks (PFNs) that account for interindividual heterogeneity in functional brain network topography in 9-10 year olds from the Adolescent Brain Cognitive Development℠ Study. Across matched discovery (n = 3525) and replication (n = 3447) samples, the total cortical representation of fronto-parietal PFNs positively correlates with general cognition. Cross-validated ridge regressions trained on PFN topography predict cognition in unseen data across domains, with prediction accuracy increasing along the cortex's sensorimotor-association organizational axis. These results establish that functional network topography heterogeneity is associated with individual differences in cognition before the critical transition into adolescence.


Asunto(s)
Individualidad , Imagen por Resonancia Magnética , Humanos , Adolescente , Imagen por Resonancia Magnética/métodos , Encéfalo , Cognición , Pruebas Neuropsicológicas , Mapeo Encefálico
14.
Neuroimage Clin ; 40: 103541, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37972450

RESUMEN

OBJECTIVE: Investigate the brain functional networks associated with motor impairment in people with Parkinson's disease (PD). BACKGROUND: PD is primarily characterized by motor dysfunction. Resting-state functional connectivity (RsFC) offers a unique opportunity to non-invasively characterize brain function. In this study, we hypothesized that the motor dysfunction observed in people with PD involves atypical connectivity not only in motor but also in higher-level attention networks. Understanding the interaction between motor and non-motor RsFC that are related to the motor signs could provide insights into PD pathophysiology. METHODS: We used data from 88 people with PD (mean age: 68.2(SD:10), 55 M/33F) coming from 2 cohorts. Motor severity was assessed in practical OFF-medication state, using MDS-UPDRS Part-III motor scores (mean: 49 (SD:10)). RsFC was characterized using an atlas of 384 regions that were grouped into 13 functional networks. Associations between RsFC and motor severity were assessed independently for each RsFC using predictive modeling. RESULTS: The top 5 % models that predicted the MDS-UPDRS-III motor scores with effect size >0.5 were the connectivity between (1) the somatomotor and Subcortical-Basal-ganglia, (2) somatomotor and Visual and (3) CinguloOpercular (CiO) and language/Ventral attention (Lan/VeA) network pairs. DISCUSSION: Our findings suggest that, along with motor networks, visual- and attention-related cortical networks are also associated with the motor symptoms of PD. Non-motor networks may be involved indirectly in motor-coordination. When people with PD have deficits in motor networks, more attention may be needed to carry out formerly automatic motor functions, consistent with compensatory mechanisms in parkinsonian movement disorders.


Asunto(s)
Enfermedad de Parkinson , Humanos , Anciano , Enfermedad de Parkinson/complicaciones , Enfermedad de Parkinson/diagnóstico por imagen , Enfermedad de Parkinson/tratamiento farmacológico , Imagen por Resonancia Magnética , Ganglios Basales , Encéfalo/diagnóstico por imagen , Mapeo Encefálico
15.
Br J Anaesth ; 131(6): 1030-1042, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37714750

RESUMEN

BACKGROUND: Clinical studies suggest that anaesthesia exposure early in life affects neurobehavioural development. We designed a non-human primate (NHP) study to evaluate cognitive, behavioural, and brain functional and structural alterations after isoflurane exposure during infancy. These NHPs displayed decreased close social behaviour and increased astrogliosis in specific brain regions, most notably in the amygdala. Here we hypothesise that resting-state functional connectivity MRI can detect alterations in connectivity of brain areas that relate to these social behaviours and astrogliosis. METHODS: Imaging was performed in 2-yr-old NHPs under light anaesthesia, after early-in-life (postnatal days 6-12) exposure to 5 h of isoflurane either one or three times, or to room air. Brain images were segmented into 82 regions of interest; the amygdala and the posterior cingulate cortex were chosen for a seed-based resting-state functional connectivity MRI analysis. RESULTS: We found differences between groups in resting-state functional connectivity of the amygdala and the auditory cortices, medial premotor cortex, and posterior cingulate cortex. There were also alterations in resting-state functional connectivity between the posterior cingulate cortex and secondary auditory, polar prefrontal, and temporal cortices, and the anterior insula. Relationships were identified between resting-state functional connectivity alterations and the decrease in close social behaviour and increased astrogliosis. CONCLUSIONS: Early-in-life anaesthesia exposure in NHPs is associated with resting-state functional connectivity alterations of the amygdala and the posterior cingulate cortex with other brain regions, evident at the juvenile age of 2 yr. These changes in resting-state functional connectivity correlate with the decrease in close social behaviour and increased astrogliosis. Using resting-state functional connectivity MRI to study the neuronal underpinnings of early-in-life anaesthesia-induced behavioural alterations could facilitate development of a biomarker for anaesthesia-induced developmental neurotoxicity.


Asunto(s)
Isoflurano , Animales , Isoflurano/efectos adversos , Gliosis , Encéfalo/diagnóstico por imagen , Giro del Cíngulo/diagnóstico por imagen , Imagen por Resonancia Magnética/métodos , Primates , Mapeo Encefálico/métodos , Vías Nerviosas/diagnóstico por imagen , Vías Nerviosas/fisiología
17.
Dev Cogn Neurosci ; 60: 101234, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-37023632

RESUMEN

Functional MRI (fMRI) data acquired using echo-planar imaging (EPI) are highly distorted by magnetic field inhomogeneities. Distortion and differences in image contrast between EPI and T1-weighted and T2-weighted (T1w/T2w) images makes their alignment a challenge. Typically, field map data are used to correct EPI distortions. Alignments achieved with field maps can vary greatly and depends on the quality of field map data. However, many public datasets lack field map data entirely. Additionally, reliable field map data is often difficult to acquire in high-motion pediatric or developmental cohorts. To address this, we developed Synth, a software package for distortion correction and cross-modal image registration that does not require field map data. Synth combines information from T1w and T2w anatomical images to construct an idealized undistorted synthetic image with similar contrast properties to EPI data. This synthetic image acts as an effective reference for individual-specific distortion correction. Using pediatric (ABCD: Adolescent Brain Cognitive Development) and adult (MSC: Midnight Scan Club; HCP: Human Connectome Project) data, we demonstrate that Synth performs comparably to field map distortion correction approaches, and often outperforms them. Field map-less distortion correction with Synth allows accurate and precise registration of fMRI data with missing or corrupted field map information.


Asunto(s)
Algoritmos , Procesamiento de Imagen Asistido por Computador , Adulto , Humanos , Niño , Adolescente , Procesamiento de Imagen Asistido por Computador/métodos , Imagen por Resonancia Magnética/métodos , Imagen Eco-Planar/métodos , Encéfalo/diagnóstico por imagen , Artefactos
18.
Dev Cogn Neurosci ; 60: 101231, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36934605

RESUMEN

Resting-state functional connectivity (RSFC) is a powerful tool for characterizing brain changes, but it has yet to reliably predict higher-order cognition. This may be attributed to small effect sizes of such brain-behavior relationships, which can lead to underpowered, variable results when utilizing typical sample sizes (N∼25). Inspired by techniques in genomics, we implement the polyneuro risk score (PNRS) framework - the application of multivariate techniques to RSFC data and validation in an independent sample. Utilizing the Adolescent Brain Cognitive Development® cohort split into two datasets, we explore the framework's ability to reliably capture brain-behavior relationships across 3 cognitive scores - general ability, executive function, learning & memory. The weight and significance of each connection is assessed in the first dataset, and a PNRS is calculated for each participant in the second. Results support the PNRS framework as a suitable methodology to inspect the distribution of connections contributing towards behavior, with explained variance ranging from 1.0 % to 21.4 %. For the outcomes assessed, the framework reveals globally distributed, rather than localized, patterns of predictive connections. Larger samples are likely necessary to systematically identify the specific connections contributing towards complex outcomes. The PNRS framework could be applied translationally to identify neurologically distinct subtypes of neurodevelopmental disorders.


Asunto(s)
Mapeo Encefálico , Cognición , Adolescente , Humanos , Mapeo Encefálico/métodos , Encéfalo , Factores de Riesgo , Función Ejecutiva , Imagen por Resonancia Magnética/métodos
19.
Dev Cogn Neurosci ; 60: 101213, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36774827

RESUMEN

Differences in looking at the eyes of others are one of the earliest behavioral markers for social difficulties in neurodevelopmental disabilities, including autism. However, it is unknown how early visuo-social experiences relate to the maturation of infant brain networks that process visual social stimuli. We investigated functional connectivity (FC) within the ventral visual object pathway as a contributing neural system. Densely sampled, longitudinal eye-tracking and resting state fMRI (rs-fMRI) data were collected from infant rhesus macaques, an important model of human social development, from birth through 6 months of age. Mean trajectories were fit for both datasets and individual trajectories from subjects with both eye-tracking and rs-fMRI data were used to test for brain-behavior relationships. Exploratory findings showed infants with greater increases in FC between left V1 to V3 visual areas have an earlier increase in eye-looking before 2 months. This relationship was moderated by social status such that infants with low social status had a stronger association between left V1 to V3 connectivity and eye-looking than high status infants. Results indicated that maturation of the visual object pathway may provide an important neural substrate supporting adaptive transitions in social visual attention during infancy.


Asunto(s)
Trastorno Autístico , Vías Visuales , Animales , Humanos , Lactante , Macaca mulatta , Estatus Social , Encéfalo , Imagen por Resonancia Magnética/métodos
20.
Neuroscience ; 507: 36-51, 2022 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-36368603

RESUMEN

We previously showed that both open-loop (beat of a metronome) and closed-loop (phase-dependent tactile feedback) cueing may be similarly effective in reducing Freezing of Gait (FoG), assessed with a quantitative FoG Index, while turning in place in the laboratory in a group of people with Parkinson's disease (PD). Despite the similar changes on the FoG Index, it is not known whether both cueing responses require attentional control, which would explain FoG Index improvement. The mechanisms underlying cueing responses are poorly understood. Here, we tested the hypothesis that the salience network would predict responsiveness (i.e., FoG Index improvement) to open-loop and closed-loop cueing in people with and without FoG of PD, as salience network contributes to tasks requiring attention to external stimuli in healthy adults. Thirteen people with PD with high-quality imaging data were analyzed to characterize relationships between resting-state MRI functional connectivity and responses to cues. The interaction of the salience network and retrosplenial-temporal networks was the best predictor of responsiveness to open-loop cueing, presenting the largest effect size (d = 1.16). The interaction between the salience network and subcortical as well as cingulo-parietal and subcortical networks were the strongest predictors of responsiveness to closed-loop cueing, presenting the largest effect sizes (d = 1.06 and d = 0.84, respectively). Salience network activity was a common predictor of responsiveness to both cueing, which suggests that auditory and proprioceptive stimuli during turning may require some level of cognitive and insular activity, anchored within the salience network, which explain FoG Index improvements in people with PD.


Asunto(s)
Trastornos Neurológicos de la Marcha , Enfermedad de Parkinson , Humanos , Señales (Psicología) , Proyectos Piloto , Marcha/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA