RESUMEN
Niacin was found in the lysolecithin model of multiple sclerosis (MS) to promote the phagocytic clearance of debris and enhance remyelination. Lysolecithin lesions have prominent microglia/macrophages but lack lymphocytes that populate plaques of MS or its experimental autoimmune encephalomyelitis (EAE) model. Thus, the current study assessed the efficacy of niacin in EAE. We found that niacin inconsistently affects EAE clinical score, and largely does not ameliorate neuropathology. In culture, niacin enhances phagocytosis by macrophages, but does not reduce T cell proliferation. We suggest that studies of niacin for potential remyelination in MS should include a therapeutic that targets adaptive immunity.
Asunto(s)
Encefalomielitis Autoinmune Experimental , Ratones Endogámicos C57BL , Esclerosis Múltiple , Niacina , Encefalomielitis Autoinmune Experimental/tratamiento farmacológico , Encefalomielitis Autoinmune Experimental/inmunología , Animales , Niacina/uso terapéutico , Femenino , Ratones , Esclerosis Múltiple/tratamiento farmacológico , Esclerosis Múltiple/inmunología , Fagocitosis/efectos de los fármacos , Macrófagos/efectos de los fármacos , Macrófagos/inmunología , Células Cultivadas , Modelos Animales de Enfermedad , Linfocitos T/efectos de los fármacos , Linfocitos T/inmunologíaRESUMEN
BACKGROUND: Inflammation-exacerbated secondary brain injury and limited tissue regeneration are barriers to favourable prognosis after intracerebral haemorrhage (ICH). As a regulator of inflammation and lipid metabolism, Liver X receptor (LXR) has the potential to alter microglia/macrophage (M/M) phenotype, and assist tissue repair by promoting cholesterol efflux and recycling from phagocytes. To support potential clinical translation, the benefits of enhanced LXR signalling are examined in experimental ICH. METHODS: Collagenase-induced ICH mice were treated with the LXR agonist GW3965 or vehicle. Behavioural tests were conducted at multiple time points. Lesion and haematoma volume, and other brain parameters were assessed using multimodal MRI with T2-weighted, diffusion tensor imaging and dynamic contrast-enhanced MRI sequences. The fixed brain cryosections were stained and confocal microscopy was applied to detect LXR downstream genes, M/M phenotype, lipid/cholesterol-laden phagocytes, oligodendrocyte lineage cells and neural stem cells. Western blot and real-time qPCR were also used. CX3CR1CreER: Rosa26iDTR mice were employed for M/M-depletion experiments. RESULTS: GW3965 treatment reduced lesion volume and white matter injury, and promoted haematoma clearance. Treated mice upregulated LXR downstream genes including ABCA1 and Apolipoprotein E, and had reduced density of M/M that apparently shifted from proinflammatory interleukin-1ß+ to Arginase1+CD206+ regulatory phenotype. Fewer cholesterol crystal or myelin debris-laden phagocytes were observed in GW3965 mice. LXR activation increased the number of Olig2+PDGFRα+ precursors and Olig2+CC1+ mature oligodendrocytes in perihaematomal regions, and elevated SOX2+ or nestin+ neural stem cells in lesion and subventricular zone. MRI results supported better lesion recovery by GW3965, and this was corroborated by return to pre-ICH values of functional rotarod activity. The therapeutic effects of GW3965 were abrogated by M/M depletion in CX3CR1CreER: Rosa26iDTR mice. CONCLUSIONS: LXR agonism using GW3965 reduced brain injury, promoted beneficial properties of M/M and facilitated tissue repair correspondent with enhanced cholesterol recycling.
Asunto(s)
Lesiones Encefálicas , Microglía , Ratones , Animales , Receptores X del Hígado/agonistas , Receptores X del Hígado/metabolismo , Microglía/metabolismo , Receptores Nucleares Huérfanos/agonistas , Receptores Nucleares Huérfanos/metabolismo , Imagen de Difusión Tensora , Macrófagos/metabolismo , Colesterol/metabolismo , Colesterol/farmacología , Hemorragia Cerebral/metabolismo , Inflamación , Lesiones Encefálicas/metabolismo , HematomaRESUMEN
Glioblastomas (GBM) are aggressive brain tumors with extensive intratumoral heterogeneity that contributes to treatment resistance. Spatial characterization of GBMs could provide insights into the role of the brain tumor microenvironment in regulating intratumoral heterogeneity. Here, we performed spatial transcriptomic and single-cell analyses of the mouse and human GBM microenvironment to dissect the impact of distinct anatomical regions of brains on GBM. In a syngeneic GBM mouse model, spatial transcriptomics revealed that numerous extracellular matrix (ECM) molecules, including biglycan, were elevated in areas infiltrated with brain tumor-initiating cells (BTIC). Single-cell RNA sequencing and single-cell assay for transposase-accessible chromatin using sequencing showed that ECM molecules were differentially expressed by GBM cells based on their differentiation and cellular programming phenotypes. Exogeneous biglycan or overexpression of biglycan resulted in a higher proliferation rate of BTICs, which was associated mechanistically with low-density lipoprotein receptor-related protein 6 (LRP6) binding and activation of the Wnt/ß-catenin pathway. Biglycan-overexpressing BTICs developed into larger tumors and displayed mesenchymal phenotypes when implanted intracranially in mice. This study points to the spatial heterogeneity of ECM molecules in GBM and suggests that the biglycan-LRP6 axis could be a therapeutic target to curb tumor growth. SIGNIFICANCE: Characterization of the spatial heterogeneity of glioblastoma identifies regulators of brain tumor-initiating cells and tumor growth that could serve as candidates for therapeutic interventions to improve the prognosis of patients.
Asunto(s)
Neoplasias Encefálicas , Glioblastoma , Humanos , Animales , Ratones , Biglicano/genética , Biglicano/metabolismo , Glioblastoma/patología , Neoplasias Encefálicas/patología , Encéfalo/patología , Análisis Espacial , Proliferación Celular , Microambiente TumoralRESUMEN
BACKGROUND: The role of tumor-associated macrophages (TAMs) in glioblastoma (GBM) disease progression has received increasing attention. Recent advances have shown that TAMs can be re-programmed to exert a pro-inflammatory, anti-tumor effect to control GBMs. However, imaging methods capable of differentiating tumor progression from immunotherapy treatment effects have been lacking, making timely assessment of treatment response difficult. We showed that tracking monocytes using iron oxide nanoparticle (USPIO) with MRI can be a sensitive imaging method to detect therapy response directed at the innate immune system. METHODS: We implanted syngeneic mouse glioma stem cells into C57/BL6 mice and treated the animals with either niacin (a stimulator of innate immunity) or vehicle. Animals were imaged using an anatomical MRI sequence, R2* mapping, and quantitative susceptibility mapping (QSM) before and after USPIO injection. RESULTS: Compared to vehicles, niacin-treated animals showed significantly higher susceptibility and R2*, representing USPIO and monocyte infiltration into the tumor. We observed a significant reduction in tumor size in the niacin-treated group 7 days later. We validated our MRI results with flow cytometry and immunofluoresence, which showed that niacin decreased pro-inflammatory Ly6C high monocytes in the blood but increased CD16/32 pro-inflammatory macrophages within the tumor, consistent with migration of these pro-inflammatory innate immune cells from the blood to the tumor. CONCLUSION: MRI with USPIO injection can detect therapeutic responses of innate immune stimulating agents before changes in tumor size have occurred, providing a potential complementary imaging technique to monitor cancer immunotherapies. MANUSCRIPT HIGHLIGHT: We show that iron oxide nanoparticles (USPIOs) can be used to label innate immune cells and detect the trafficking of pro-inflammatory monocytes into the glioblastoma. This preceded changes in tumor size, making it a more sensitive imaging technique.
Asunto(s)
Glioblastoma , Glioma , Niacina , Ratones , Animales , Monocitos/patología , Glioma/patología , Modelos Animales , Imagen por Resonancia Magnética/métodosRESUMEN
The highly immunosuppressive and heterogeneous milieu of brain malignancies contributes to their dismal prognosis. Regardless of their cellular origin, brain tumors grow in an environment with various specialized organ-resident cells. Although homeostatic microglia contribute to a healthy brain, conversations between disease-associated microglia and T cells compromise their individual and collective capacity to curb malignant growth. We review the mechanisms of T cell-microglia interactions and discuss how their collaboration fosters heterogeneity and immunosuppression in brain cancers. Because of the importance of microglia and T cells in the brain tumor microenvironment, it is crucial to understand their interactions to derive innovative therapeutics.
Asunto(s)
Neoplasias Encefálicas , Microglía , Humanos , Microglía/patología , Macrófagos/patología , Linfocitos T/patología , Neoplasias Encefálicas/patología , Microambiente Tumoral , Encéfalo/patologíaRESUMEN
Iron deposition in the brain begins early in multiple sclerosis (MS) and continues unabated. Ferrous iron is toxic to neurons, yet the therapies used in MS do not counter iron neurotoxicity. Extracts of Hibiscus sabdariffa (HS) are used in many cultures for medicinal purposes. We collected a distinct HS extract and found that it abolished the killing of neurons by iron in culture; medications used in MS were ineffective when similarly tested. Neuroprotection by HS was not due to iron chelation or anthocyanin content. In free radical scavenging assays, HS was equipotent to alpha lipoic acid, an anti-oxidant being tested in MS. However, alpha lipoic acid was only modestly protective against iron-mediated killing. Moreover, a subfraction of HS without radical scavenging activity negated iron toxicity, whereas a commercial hibiscus preparation with anti-oxidant activity could not. The idea that HS might have altered properties within neurons to confer neuroprotection is supported by its amelioration of toxicity caused by other toxins: beta-amyloid, rotenone and staurosporine. Finally, in a mouse model of MS, HS reduced disability scores and ameliorated the loss of axons in the spinal cord. HS holds therapeutic potential to counter iron neurotoxicity, an unmet need that drives the progression of disability in MS.
Asunto(s)
Hibiscus , Esclerosis Múltiple , Síndromes de Neurotoxicidad , Ácido Tióctico , Animales , Antioxidantes , Hierro , Ratones , Esclerosis Múltiple/tratamiento farmacológico , Extractos Vegetales/farmacologíaRESUMEN
Brain tumorinitiating cells (BTICs) drive glioblastoma growth through not fully understood mechanisms. Here, we found that about 8% of cells within the human glioblastoma microenvironment coexpress programmed cell death 1 (PD-1) and BTIC marker. Gain- or loss-of-function studies revealed that tumor-intrinsic PD-1 promoted proliferation and self-renewal of BTICs. Phosphorylation of tyrosines within the cytoplasmic tail of PD-1 recruited Src homology 2containing phosphatase 2 and activated the nuclear factor kB in BTICs. Notably, the tumor-intrinsic promoting effects of PD-1 did not require programmed cell death ligand 1(PD-L1) ligation; thus, the therapeutic antibodies inhibiting PD-1/PD-L1 interaction could not overcome the growth advantage of PD-1 in BTICs. Last, BTIC-intrinsic PD-1 accelerated intracranial tumor growth, and this occurred in mice lacking T and B cells. These findings point to a critical role for PD-1 in BTICs and uncover a nonimmune resistance mechanism of patients with glioblastoma to PD-1 or PD-L1blocking therapies.
RESUMEN
Glioblastomas (GBMs) are highly aggressive, recurrent, and lethal brain tumors that are maintained via brain tumor-initiating cells (BTICs). The aggressiveness of BTICs may be dependent on the extracellular matrix (ECM) molecules that are highly enriched within the GBM microenvironment. Here, we investigated the expression of ECM molecules in GBM patients by mining the transcriptomic databases and also staining human GBM specimens. RNA levels for fibronectin, brevican, versican, heparan sulfate proteoglycan 2 (HSPG2), and several laminins were high in GBMs compared to normal brain, and this was corroborated by immunohistochemistry. While fibrinogen transcript was at normal level in GBM, its protein immunoreactivity was prominent within GBM tissues. These ECM molecules in tumor specimens were in proximity to, and surrounding BTICs. In culture, fibronectin and pan-laminin induced the adhesion of BTICs onto the plastic substratum. However, fibrinogen increased the size of the BTIC spheres by facilitating the adhesive property, motility, and invasiveness of BTICs. These features of elevated invasiveness were corroborated in resected GBM specimens by the close proximity of fibrinogen with matrix metalloproteinase (MMP)-2 and-9, which are proteases implicated in metastasis. Moreover, the effect of fibrinogen-induced invasiveness was attenuated in BTICs where MMP-2 and -9 have been inhibited with siRNAs or pharmacological inhibitors. Our results implicate fibrinogen in GBM as a mediator of the invasive properties of BTICs, and as a target for therapy to reduce BTIC tumorigenecity.
Asunto(s)
Neoplasias Encefálicas/patología , Fibrinógeno/metabolismo , Glioblastoma/patología , Células Madre Neoplásicas/patología , Microambiente Tumoral/genética , Encéfalo/patología , Neoplasias Encefálicas/genética , Regulación Neoplásica de la Expresión Génica/genética , Glioblastoma/genética , Humanos , Células Madre Neoplásicas/metabolismo , Microambiente Tumoral/fisiologíaRESUMEN
BACKGROUND: Capparis spinosa, Rosa canina, Securidaca securigera, Silybum marianum, Urtica dioica, Trigonella foenum-graecum and Vaccinium arctostaphylos are used traditionally as an herbal combination for treatment of diabetic patients in Iran. Despite the clinical evidence supporting their use in solitary form, no controlled human study has determined the efficacy and safety of their combination in treatment of diabetic patients. METHODS: A total 150 type II diabetic patients of both sexes under the oral anti-hyperglycemic drugs treatment (maximum 10 mg glyburide and 1000 mg metformin daily) were randomly assigned to three groups. The patients in each group received either herbal combination or placebo or metformin capsule daily for three months, without any change in their previous oral anti-hyperglycemic drugs dosage. Herbal combination, placebo and metformin capsules matched by shape and color were prepared in the Institute of Medicinal Plants Karaj, Iran. To assess the efficacy and safety of the treatments, the patients fasting plasma glucose, HbA1c, lipid profile, liver enzymes and renal function were determined at the beginning of the study and after three months. RESULTS: Results showed that after three months, the fasting plasma glucose, HbA1c and cholesterol levels in herbal combination were decreased significantly as compared to placebo group (20% and 12% respectively) and also compared to base line (25% and 15% respectively). The herbal combination was as effective as metformin in reduction of FPG (p = 0.001, p = 0.001) and HbA1c (p = 0.028 and p = 0.050 respectively) compared to placebo. No notable hepatic, renal and gastrointestinal side effects were observed in the trial groups. CONCLUSION: The results suggest that traditional herbal combination may safely improve glycemic control in type II diabetic patients with no significant adverse effect. [Formula: see text].
Asunto(s)
Diabetes Mellitus Tipo 2 , Hipoglucemiantes/uso terapéutico , Medicina Arábiga , Fitoterapia , Glucemia/análisis , Diabetes Mellitus Tipo 2/sangre , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Método Doble Ciego , Combinación de Medicamentos , Femenino , Hemoglobina Glucada/análisis , Humanos , Irán , MasculinoRESUMEN
Previous studies have demonstrated that maturation of dendritic cells (DCs) by pathogenic components through pathogen-associated molecular patterns (PAMPs) such as Listeria monocytogenes lysate (LML) or CpG DNA can improve cancer vaccination in experimental models. In this study, a mathematical model based on an artificial neural network (ANN) was used to predict several patterns and dosage of matured DC administration for improved vaccination. The ANN model predicted that repeated co-injection of tumor antigen (TA)-loaded DCs matured with CpG (CpG-DC) and LML (List-DC) results in improved antitumor immune response as well as a reduction of immunosuppression in the tumor microenvironment. In the present study, we evaluated the ANN prediction accuracy about DC-based cancer vaccines pattern in the treatment of Wehi164 fibrosarcoma cancer-bearing mice. Our results showed that the administration of the DC vaccine according to ANN predicted pattern, leads to a decrease in the rate of tumor growth and size and augments CTL effector function. Furthermore, gene expression analysis confirmed an augmented immune response in the tumor microenvironment. Experimentations justified the validity of the ANN model forecast in the tumor growth and novel optimal dosage that led to more effective treatment.
Asunto(s)
Vacunas contra el Cáncer/inmunología , Células Dendríticas/inmunología , Fibrosarcoma/terapia , Inmunoterapia Adoptiva , Linfocitos T Citotóxicos/inmunología , Animales , Línea Celular Tumoral , Proliferación Celular , Células Dendríticas/trasplante , Fibrosarcoma/inmunología , Regulación Neoplásica de la Expresión Génica , Humanos , Inmunidad/genética , Ratones , Ratones Endogámicos BALB C , Modelos Animales , Modelos Teóricos , Trasplante de Neoplasias , Redes Neurales de la Computación , Carga Tumoral , VacunaciónRESUMEN
Glioblastomas are generally incurable partly because monocytes, macrophages, and microglia in afflicted patients do not function in an antitumor capacity. Medications that reactivate these macrophages/microglia, as well as circulating monocytes that become macrophages, could thus be useful to treat glioblastoma. We have discovered that niacin (vitamin B3) is a potential stimulator of these inefficient myeloid cells. Niacin-exposed monocytes attenuated the growth of brain tumor-initiating cells (BTICs) derived from glioblastoma patients by producing anti-proliferative interferon-α14. Niacin treatment of mice bearing intracranial BTICs increased macrophage/microglia representation within the tumor, reduced tumor size, and prolonged survival. These therapeutic outcomes were negated in mice depleted of circulating monocytes or harboring interferon-α receptor-deleted BTICs. Combination treatment with temozolomide enhanced niacin-promoted survival. Monocytes from glioblastoma patients had increased interferon-α14 upon niacin exposure and were reactivated to reduce BTIC growth in culture. We highlight niacin, a common vitamin that can be quickly translated into clinical application, as an immune stimulator against glioblastomas.
Asunto(s)
Neoplasias Encefálicas , Glioblastoma , Niacina , Animales , Antineoplásicos Alquilantes/uso terapéutico , Neoplasias Encefálicas/tratamiento farmacológico , Glioblastoma/tratamiento farmacológico , Humanos , Ratones , Células Madre Neoplásicas , Niacina/uso terapéutico , TemozolomidaRESUMEN
BACKGROUND: Imagining ways to prevent or treat glioblastoma (GBM) has been hindered by a lack of understanding of its pathogenesis. Although overexpression of platelet derived growth factor with two A-chains (PDGF-AA) may be an early event, critical details of the core biology of GBM are lacking. For example, existing PDGF-driven models replicate its microscopic appearance, but not its genomic architecture. Here we report a model that overcomes this barrier to authenticity. METHODS: Using a method developed to establish neural stem cell cultures, we investigated the effects of PDGF-AA on subventricular zone (SVZ) cells, one of the putative cells of origin of GBM. We microdissected SVZ tissue from p53-null and wild-type adult mice, cultured cells in media supplemented with PDGF-AA, and assessed cell viability, proliferation, genome stability, and tumorigenicity. RESULTS: Counterintuitive to its canonical role as a growth factor, we observed abrupt and massive cell death in PDGF-AA: wild-type cells did not survive, whereas a small fraction of null cells evaded apoptosis. Surviving null cells displayed attenuated proliferation accompanied by whole chromosome gains and losses. After approximately 100 days in PDGF-AA, cells suddenly proliferated rapidly, acquired growth factor independence, and became tumorigenic in immune-competent mice. Transformed cells had an oligodendrocyte precursor-like lineage marker profile, were resistant to platelet derived growth factor receptor alpha inhibition, and harbored highly abnormal karyotypes similar to human GBM. CONCLUSION: This model associates genome instability in neural progenitor cells with chronic exposure to PDGF-AA and is the first to approximate the genomic landscape of human GBM and the first in which the earliest phases of the disease can be studied directly.
Asunto(s)
Neoplasias Encefálicas , Glioblastoma , Células-Madre Neurales , Factor de Crecimiento Derivado de Plaquetas , Proteína p53 Supresora de Tumor , Animales , Neoplasias Encefálicas/inducido químicamente , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/patología , Células Cultivadas , Glioblastoma/inducido químicamente , Glioblastoma/genética , Glioblastoma/metabolismo , Glioblastoma/patología , Ventrículos Laterales/efectos de los fármacos , Ventrículos Laterales/metabolismo , Ventrículos Laterales/patología , Ratones , Ratones Endogámicos C57BL , Células-Madre Neurales/efectos de los fármacos , Células-Madre Neurales/patología , Factor de Crecimiento Derivado de Plaquetas/farmacología , Proteína p53 Supresora de Tumor/deficiencia , Proteína p53 Supresora de Tumor/metabolismoRESUMEN
The article Niacinmediated rejuvenation of macrophage/microglia enhances remyelination of the aging central nervous system, written by Khalil S. Rawji, Adam M.H. Young, Tanay Ghosh, Nathan J. Michaels, Reza Mirzaei, Janson Kappen, Kathleen L. Kolehmainen, Nima Alaeiilkhchi, Brian Lozinski, Manoj K. Mishra, Annie Pu, Weiwen Tang, Salma Zein, Deepak K. Kaushik, Michael B. Keough, Jason R. Plemel, Fiona Calvert, Andrew J. Knights, Daniel J. Gaffney, Wolfram Tetzlaff, Robin J. M. Franklin and V. Wee Yong, was originally published electronically on the publisher's internet.
RESUMEN
Myeloid cells that infiltrate into brain tumors are deactivated or exploited by the tumor cells. We previously demonstrated that compromised microglia, monocytes, and macrophages in malignant gliomas could be reactivated by amphotericin-B to contain the growth of brain tumorinitiating cells (BTICs). We identified meclocycline as another activator of microglia, so we sought to test whether its better-tolerated derivative, demeclocycline, also stimulates monocytes to restrict BTIC growth. Monocytes were selected for study as they would be exposed to demeclocycline in the circulation prior to entry into brain tumors to become macrophages. We found that demeclocycline increased the activity of monocytes in culture, as determined by tumor necrosis factor-α production and chemotactic capacity. The conditioned medium of demeclocycline-stimulated monocytes attenuated the growth of BTICs generated from human glioblastoma resections, as evaluated using neurosphere and alamarBlue assays, and cell counts. Demeclocycline also had direct effects in reducing BTIC growth. A global gene expression screen identified several genes, such as DNA damage inducible transcript 4, frizzled class receptor 5 and reactive oxygen species modulator 1, as potential regulators of demeclocycline-mediated BTIC growth reduction. Amongst several tetracycline derivatives, only demeclocycline directly reduced BTIC growth. In summary, we have identified demeclocycline as a novel inhibitor of the growth of BTICs, through direct effect and through indirect stimulation of monocytes. Demeclocycline is a candidate to reactivate compromised immune cells to improve the prognosis of patients with gliomas.
Asunto(s)
Antineoplásicos/uso terapéutico , Neoplasias Encefálicas/tratamiento farmacológico , Demeclociclina/uso terapéutico , Glioma/tratamiento farmacológico , Monocitos/fisiología , Células Madre Neoplásicas/fisiología , Macrófagos Asociados a Tumores/fisiología , Carcinogénesis , Procesos de Crecimiento Celular , Células Cultivadas , HumanosRESUMEN
Remyelination following CNS demyelination restores rapid signal propagation and protects axons; however, its efficiency declines with increasing age. Both intrinsic changes in the oligodendrocyte progenitor cell population and extrinsic factors in the lesion microenvironment of older subjects contribute to this decline. Microglia and monocyte-derived macrophages are critical for successful remyelination, releasing growth factors and clearing inhibitory myelin debris. Several studies have implicated delayed recruitment of macrophages/microglia into lesions as a key contributor to the decline in remyelination observed in older subjects. Here we show that the decreased expression of the scavenger receptor CD36 of aging mouse microglia and human microglia in culture underlies their reduced phagocytic activity. Overexpression of CD36 in cultured microglia rescues the deficit in phagocytosis of myelin debris. By screening for clinically approved agents that stimulate macrophages/microglia, we have found that niacin (vitamin B3) upregulates CD36 expression and enhances myelin phagocytosis by microglia in culture. This increase in myelin phagocytosis is mediated through the niacin receptor (hydroxycarboxylic acid receptor 2). Genetic fate mapping and multiphoton live imaging show that systemic treatment of 9-12-month-old demyelinated mice with therapeutically relevant doses of niacin promotes myelin debris clearance in lesions by both peripherally derived macrophages and microglia. This is accompanied by enhancement of oligodendrocyte progenitor cell numbers and by improved remyelination in the treated mice. Niacin represents a safe and translationally amenable regenerative therapy for chronic demyelinating diseases such as multiple sclerosis.
Asunto(s)
Envejecimiento/fisiología , Macrófagos/patología , Microglía/metabolismo , Niacina/metabolismo , Rejuvenecimiento/fisiología , Remielinización/fisiología , Animales , Axones/patología , Enfermedades Desmielinizantes/patología , Humanos , Ratones Transgénicos , Microglía/patología , Esclerosis Múltiple/patología , Fagocitosis/fisiologíaRESUMEN
Microglia and macrophages are the largest component of the inflammatory infiltrate in glioblastoma (GBM). However, whether there are differences in their representation and activity in the prognostically-favorable isocitrate dehydrogenase (IDH)-mutated compared to -wild type GBMs is unknown. Studies on human specimens of untreated IDH-mutant GBMs are rare given they comprise 10% of all GBMs and often present at lower grades, receiving treatments prior to dedifferentiation that can drastically alter microglia and macrophage phenotypes. We were able to obtain large samples of four previously untreated IDH-mutant GBM. Using flow cytometry, immunofluorescence techniques with automated segmentation protocols that quantify at the individual-cell level, and comparison between single-cell RNA-sequencing (scRNA-seq) databases of human GBM, we discerned dissimilarities between GBM-associated microglia and macrophages (GAMMs) in IDH-mutant and -wild type GBMs. We found there are significantly fewer GAMM in IDH-mutant GBMs, but they are more pro-inflammatory, suggesting this contributes to the better prognosis of these tumors. Our pro-inflammatory score which combines the expression of inflammatory markers (CD68/HLA-A, -B, -C/TNF/CD163/IL10/TGFB2), Iba1 intensity, and GAMM surface area also indicates that more pro-inflammatory GAMMs are associated with longer overall survival independent of IDH status. Interrogation of scRNA-seq databases demonstrates microglia in IDH-mutants are mainly pro-inflammatory, while anti-inflammatory macrophages that upregulate genes such as FCER1G and TYROBP predominate in IDH-wild type GBM. Taken together, these observations are the first head-to-head comparison of GAMMs in treatment-naïve IDH-mutant versus -wild type GBMs. Our findings highlight biological disparities in the innate immune microenvironment related to IDH prognosis that can be exploited for therapeutic purposes.
RESUMEN
The migration of leukocytes into the CNS drives the neuropathology of multiple sclerosis (MS). This penetration likely utilizes energy resources that remain to be defined. Using the experimental autoimmune encephalomyelitis (EAE) model of MS, we determined that macrophages within the perivascular cuff of post-capillary venules are highly glycolytic as manifested by strong expression of lactate dehydrogenase A (LDHA) that converts pyruvate to lactate. These macrophages expressed prominent levels of monocarboxylate transporter-4 (MCT-4) specialized in secreting lactate from glycolytic cells. The functional relevance of glycolysis was confirmed by siRNA-mediated knockdown of LDHA and MCT-4, which decreased lactate secretion and macrophage transmigration. MCT-4 was in turn regulated by EMMPRIN (CD147) as determined through co-expression/co-immunoprecipitation studies, and siRNA-mediated EMMPRIN silencing. The functional relevance of MCT-4/EMMPRIN interaction was affirmed by lower macrophage transmigration in culture using the MCT-4 inhibitor, α-cyano-4-hydroxy-cinnamic acid (CHCA), a cinnamon derivative. CHCA also reduced leukocyte infiltration and the clinical severity of EAE. Relevance to MS was corroborated by the strong expression of MCT-4, EMMPRIN and LDHA in perivascular macrophages in MS brains. These results detail the metabolism of macrophages for transmigration from perivascular cuffs into the CNS parenchyma and identifies CHCA and diet as potential modulators of neuro-inflammation in MS.
Asunto(s)
Encéfalo/metabolismo , Movimiento Celular , Encefalomielitis Autoinmune Experimental/metabolismo , Glucólisis , Macrófagos/metabolismo , Esclerosis Múltiple/metabolismo , Animales , Basigina/metabolismo , Encéfalo/patología , Femenino , L-Lactato Deshidrogenasa/metabolismo , Macrófagos/patología , Ratones , Transportadores de Ácidos Monocarboxílicos/metabolismo , Esclerosis Múltiple/patología , Proteínas Musculares/metabolismoRESUMEN
We reported previously that microglia decreased the growth of human brain tumor-initiating cells (BTICs). Through microarray analyses of BTICs exposed in vitro to microglia, we found the induction of several genes ascribed to have roles in cell cycle arrest, reduced cell proliferation and differentiation. Herein, we tested the hypothesis that one of these genes, growth arrest specific 1 (Gas1), is a novel growth reduction factor that is induced in BTICs by microglia. We found that microglia increased the expression of Gas1 transcript and protein in glioblastoma patient-derived BTIC lines. Using neurosphere assay we show that RNAi-induced reduction of Gas1 expression in BTICs blunted the microglia-mediated BTIC growth reduction. The role of Gas1 in mediating BTIC growth arrest was further validated using orthotopic brain xenografts in mice. When microglia-induced Gas1-expressing BTIC cells (mGas1-BTICs) were implanted intra-cranially in mice, tumor growth was markedly decreased; this was mirrored in the remarkable increase in survival of mGas1-BT025 and mGas1-BT048 implanted mice, compared to mice implanted with non-microglia-exposed BTIC cells. In conclusion, this study has identified Gas1 as a novel factor and mechanism through which microglia arrest the growth of BTICs for anti-tumor property.
Asunto(s)
Neoplasias Encefálicas/metabolismo , Proteínas de Ciclo Celular/fisiología , Transformación Celular Neoplásica/metabolismo , Glioblastoma/metabolismo , Microglía/fisiología , Células Madre Neoplásicas/metabolismo , Animales , Línea Celular Tumoral , Proteínas Ligadas a GPI/fisiología , Xenoinjertos , Humanos , Ratones , Ratones Endogámicos NOD , Ratones SCID , Microglía/citología , Células Madre Neoplásicas/citologíaRESUMEN
The dismal prognosis of glioblastoma is attributed in part to the existence of stem-like brain tumor-initiating cells (BTICs) that are highly radio- and chemo-resistant. New approaches such as therapies that reprogram compromised immune cells against BTICs are needed. Effective immunotherapies in glioblastoma, however, remain elusive unless the mechanisms of immunosuppression by the tumor are better understood. Here, we describe that while the conditioned media of activated T lymphocytes reduce the growth capacity of BTICs, this growth suppression was abrogated in live co-culture of BTICs with T cells. We present evidence that BTICs produce the extracellular matrix protein tenascin-C (TNC) to inhibit T cell activity in live co-culture. In human glioblastoma brain specimens, TNC was widely deposited in the vicinity of T cells. Mechanistically, TNC inhibited T cell proliferation through interaction with α5ß1 and αvß6 integrins on T lymphocytes associated with reduced mTOR signaling. Strikingly, TNC was exported out of BTICs associated with exosomes, and TNC-depleted exosomes suppressed T cell responses to a significantly lesser extent than control. Finally, we found that circulating exosomes from glioblastoma patients contained more TNC and T cell-suppressive activity than those from control individuals. Taken together, our study establishes a novel immunosuppressive role for TNC associated with BTIC-secreted exosomes to affect local and distal T lymphocyte immunity.
RESUMEN
Myeloid-derived suppressor cells (MDSCs) are capable of suppressing the immune response. 5-Fluorouracil (5-FU) compared to other chemotherapy drugs have shown considerable decreases in the number of MDSCs without visible effects on T, B and natural killer cells, as well as dendritic cells (DCs). DC-based vaccines considered to be appropriate candidates for cancer immunotherapy. However, due to the presence of various factors like MDSCs in tumor microenvironment, DC vaccine cannot effectively perform its function. The purpose of this study was to evaluate the effect of low doses of 5-FU on the efficacy of DC-based vaccines in preventing and treating of melanoma tumor model. This research was performed on 28 melanoma tumor bearing C57BL/6 female mice. The mice were randomly divided to 4 groups, group 1 is control population while group 2 and 3 were treated with DC vaccine and 5-FU respectively and group 4 was treated with both DC Vaccine and 5-FU. The mice survival, tumor growth rate, number of MDSC and CD8+/ CD107a+ T cells in mice spleen were evaluated in each group with maximum result in group 4. Our results revealed that combination of DC vaccine and 5-FU reduced number of MDSCs (3%) and also tumor growth rate(10%)(p<0.05) and increased mice survival (70%) and increased CD8+ /CD107a+ T cells (25%). This study have shown that combinational therapy with DC vaccine improved immunity in tumor mice compared to the therapy consisting of DC vaccine or 5-FU only.