Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Base de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Nucleic Acids Res ; 50(22): 12829-12843, 2022 12 09.
Artículo en Inglés | MEDLINE | ID: mdl-36513120

RESUMEN

Cancer cells achieve immortality by employing either homology-directed repair (HDR) or the telomerase enzyme to maintain telomeres. ALT (alternative lengthening of telomeres) refers to the subset of cancer cells that employ HDR. Many ALT features are conserved from yeast to human cells, with the yeast equivalent being referred to as survivors. The non-coding RNA TERRA, and its ability to form RNA-DNA hybrids, has been implicated in ALT/survivor maintenance by promoting HDR. It is not understood which telomeres in ALT/survivors engage in HDR, nor is it clear which telomeres upregulate TERRA. Using yeast survivors as a model for ALT, we demonstrate that HDR only occurs at telomeres when they become critically short. Moreover, TERRA levels steadily increase as telomeres shorten and decrease again following HDR-mediated recombination. We observe that survivors undergo cycles of senescence, in a similar manner to non-survivors following telomerase loss, which we refer to as survivor associated senescence (SAS). Similar to 'normal' senescence, we report that RNA-DNA hybrids slow the rate of SAS, likely through the elongation of critically short telomeres, however decreasing the rate of telomere shortening may contribute to this effect. In summary, TERRA RNA-DNA hybrids regulate telomere dysfunction-induced senescence before and after survivor formation.


Asunto(s)
ARN Largo no Codificante , Saccharomyces cerevisiae , Telomerasa , Acortamiento del Telómero , Humanos , ARN Largo no Codificante/genética , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Telomerasa/genética , Telomerasa/metabolismo , Telómero/genética , Telómero/metabolismo
2.
Differentiation ; 100: 37-45, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29494831

RESUMEN

Cancer cells activate telomere maintenance mechanisms (TMMs) to bypass replicative senescence and achieve immortality by either upregulating telomerase or promoting homology-directed repair (HDR) at chromosome ends to maintain telomere length, the latter being referred to as ALT (Alternative Lengthening of Telomeres). In yeast telomerase mutants, the HDR-based repair of telomeres leads to the generation of 'survivors' that escape senescence and divide indefinitely. So far, yeast has proven to provide an accurate model to study the generation and maintenance of telomeres via HDR. Recently, it has been established that up-regulation of the lncRNA, TERRA (telomeric repeat-containing RNA), is a novel hallmark of ALT cells. Moreover, RNA-DNA hybrids are thought to trigger HDR at telomeres in ALT cells to maintain telomere length and function. Here we show that, also in established yeast type II survivors, TERRA levels are increased in an analogous manner to human ALT cells. The elevated TERRA levels are independent of yeast-specific subtelomeric structures, i.e. the presence or absence of Y' repetitive elements. Furthermore, we show that RNase H1 overexpression, which degrades the RNA moiety in RNA-DNA hybrids, impairs the growth of yeast survivors. We suggest that even in terms of TERRA regulation, yeast survivors serve as an accurate model that recapitulates many key features of human ALT cells.


Asunto(s)
ARN Largo no Codificante/genética , Ribonucleasa H/genética , Proteínas de Saccharomyces cerevisiae/genética , Homeostasis del Telómero , ARN Largo no Codificante/química , ARN Largo no Codificante/metabolismo , Secuencias Repetitivas de Ácidos Nucleicos , Ribonucleasa H/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/crecimiento & desarrollo , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Telómero/química , Telómero/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA