Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 154
Filtrar
Más filtros

Base de datos
Tipo del documento
Intervalo de año de publicación
1.
Nat Rev Drug Discov ; 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38951662

RESUMEN

In situ cancer vaccination refers to any approach that exploits tumour antigens available at a tumour site to induce tumour-specific adaptive immune responses. These approaches hold great promise for the treatment of many solid tumours, with numerous candidate drugs under preclinical or clinical evaluation and several products already approved. However, there are challenges in the development of effective in situ cancer vaccines. For example, inadequate release of tumour antigens from tumour cells limits antigen uptake by immune cells; insufficient antigen processing by antigen-presenting cells restricts the generation of antigen-specific T cell responses; and the suppressive immune microenvironment of the tumour leads to exhaustion and death of effector cells. Rationally designed delivery technologies such as lipid nanoparticles, hydrogels, scaffolds and polymeric nanoparticles are uniquely suited to overcome these challenges through the targeted delivery of therapeutics to tumour cells, immune cells or the extracellular matrix. Here, we discuss delivery technologies that have the potential to reduce various clinical barriers for in situ cancer vaccines. We also provide our perspective on this emerging field that lies at the interface of cancer vaccine biology and delivery technologies.

2.
ACS Nano ; 18(25): 16151-16165, 2024 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-38861479

RESUMEN

Immune modulation through the intracellular delivery of nucleoside-modified mRNA to immune cells is an attractive approach for in vivo immunoengineering, with applications in infectious disease, cancer immunotherapy, and beyond. Lipid nanoparticles (LNPs) have come to the fore as a promising nucleic acid delivery platform, but LNP design criteria remain poorly defined, making the rate-limiting step for LNP discovery the screening process. In this study, we employed high-throughput in vivo LNP screening based on molecular barcoding to investigate the influence of LNP composition on immune tropism with applications in vaccines and systemic immunotherapies. Screening a large LNP library under both intramuscular (i.m.) and intravenous (i.v.) injection, we observed differential influences on LNP uptake by immune populations across the two administration routes, gleaning insight into LNP design criteria for in vivo immunoengineering. In validation studies, the lead LNP formulation for i.m. administration demonstrated substantial mRNA translation in the spleen and draining lymph nodes with a more favorable biodistribution profile than LNPs formulated with the clinical standard ionizable lipid DLin-MC3-DMA (MC3). The lead LNP formulations for i.v. administration displayed potent immune transfection in the spleen and peripheral blood, with one lead LNP demonstrating substantial transfection of splenic dendritic cells and another inducing substantial transfection of circulating monocytes. Altogether, the immunotropic LNPs identified by high-throughput in vivo screening demonstrated significant promise for both locally- and systemically-delivered mRNA and confirmed the value of the LNP design criteria gleaned from our screening process, which could potentially inform future endeavors in mRNA vaccine and immunotherapy applications.


Asunto(s)
Lípidos , Ratones Endogámicos C57BL , Nanopartículas , ARN Mensajero , Animales , Nanopartículas/química , ARN Mensajero/genética , Ratones , Lípidos/química , Ensayos Analíticos de Alto Rendimiento , Femenino , Inyecciones Intramusculares , Células Dendríticas/inmunología , Células Dendríticas/metabolismo , Inyecciones Intravenosas , Inmunoterapia , Liposomas
3.
J Control Release ; 370: 614-625, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38729436

RESUMEN

Mutations in RAS, a family of proteins found in all human cells, drive a third of cancers, including many pancreatic, colorectal, and lung cancers. However, there is a lack of clinical therapies that can effectively prevent RAS from causing tumor growth. Recently, a protease was engineered that specifically degrades active RAS, offering a promising new tool for treating these cancers. However, like many other intracellularly acting protein-based therapies, this protease requires a delivery vector to reach its site of action within the cell. In this study, we explored the incorporation of cationic lipids into ionizable lipid nanoparticles (LNPs) to develop a RAS protease delivery platform capable of inhibiting cancer cell proliferation in vitro and in vivo. A library of 13 LNPs encapsulating RAS protease was designed, and each formulation was evaluated for in vitro delivery efficiency and toxicity. A subset of four top-performing LNP formulations was identified and further evaluated for their impact on cancer cell proliferation in human colorectal cancer cells with mutated KRAS in vitro and in vivo, as well as their in vivo biodistribution and toxicity. In vivo, both the concentration of cationic lipid and type of cargo influenced LNP and cargo distribution. All lead candidate LNPs showed RAS protease functionality in vitro, and the top-performing formulation achieved effective intracellular RAS protease delivery in vivo, decreasing cancer cell proliferation in an in vivo xenograft model and significantly reducing tumor growth and size. Overall, this work demonstrates the use of LNPs as an effective delivery platform for RAS proteases, which could potentially be utilized for cancer therapies.


Asunto(s)
Proliferación Celular , Lípidos , Nanopartículas , Humanos , Animales , Proliferación Celular/efectos de los fármacos , Nanopartículas/administración & dosificación , Nanopartículas/química , Lípidos/química , Línea Celular Tumoral , Ratones Desnudos , Femenino , Proteínas Proto-Oncogénicas p21(ras)/genética , Proteínas Proto-Oncogénicas p21(ras)/metabolismo , Proteínas ras/metabolismo , Distribución Tisular , Antineoplásicos/administración & dosificación , Antineoplásicos/farmacología , Antineoplásicos/química , Neoplasias/tratamiento farmacológico , Neoplasias/patología , Ratones , Sistemas de Liberación de Medicamentos
4.
ACS Nano ; 18(22): 13983-13999, 2024 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-38767983

RESUMEN

In recent years, steady progress has been made in synthesizing and characterizing engineered nanoparticles, resulting in several approved drugs and multiple promising candidates in clinical trials. Regulatory agencies such as the Food and Drug Administration and the European Medicines Agency released important guidance documents facilitating nanoparticle-based drug product development, particularly in the context of liposomes and lipid-based carriers. Even with the progress achieved, it is clear that many barriers must still be overcome to accelerate translation into the clinic. At the recent conference workshop "Mechanisms and Barriers in Nanomedicine" in May 2023 in Colorado, U.S.A., leading experts discussed the formulation, physiological, immunological, regulatory, clinical, and educational barriers. This position paper invites open, unrestricted, nonproprietary discussion among senior faculty, young investigators, and students to trigger ideas and concepts to move the field forward.


Asunto(s)
Nanomedicina , Humanos , Portadores de Fármacos/química , Liposomas/química , Nanopartículas/química , Estados Unidos
5.
J Control Release ; 371: 455-469, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38789090

RESUMEN

The full potential of ionizable lipid nanoparticles (LNPs) as an in vivo nucleic acid delivery platform has not yet been realized given that LNPs primarily accumulate in the liver following systemic administration, limiting their success to liver-centric conditions. The engineering of LNPs with antibody targeting moieties can enable extrahepatic tropism by facilitating site-specific LNP tethering and driving preferential LNP uptake into receptor-expressing cell types via receptor-mediated endocytosis. Obstetric conditions stemming from placental dysfunction, such as preeclampsia, are characterized by overexpression of cellular receptors, including the epidermal growth factor receptor (EGFR), making targeted LNP platforms an exciting potential treatment strategy for placental dysfunction during pregnancy. Herein, an EGFR antibody-conjugated LNP (aEGFR-LNP) platform was developed by engineering LNPs with increasing densities of antibody functionalization. aEGFR-LNPs were screened in vitro in immortalized placental trophoblasts and in vivo in non-pregnant and pregnant mice and compared to non-targeted formulations for extrahepatic, antibody-targeted mRNA LNP delivery to the placenta. Our top performing LNP with an intermediate density of antibody functionalization (1:5 aEGFR-LNP) mediated a âˆ¼twofold increase in mRNA delivery in murine placentas and a âˆ¼twofold increase in LNP uptake in EGFR-expressing trophoblasts compared to non-targeted counterparts. These results demonstrate the potential of antibody-conjugated LNPs for achieving extrahepatic tropism, and the ability of aEGFR-LNPs in promoting mRNA delivery to EGFR-expressing cell types in the placenta.


Asunto(s)
Receptores ErbB , Lípidos , Nanopartículas , Placenta , ARN Mensajero , Femenino , Animales , Receptores ErbB/metabolismo , Embarazo , Placenta/metabolismo , Nanopartículas/química , ARN Mensajero/administración & dosificación , Lípidos/química , Humanos , Ratones , Trofoblastos/metabolismo , Liposomas
6.
Nat Commun ; 15(1): 4235, 2024 May 18.
Artículo en Inglés | MEDLINE | ID: mdl-38762489

RESUMEN

Inflammation induced by lung infection is a double-edged sword, moderating both anti-viral and immune pathogenesis effects; the mechanism of the latter is not fully understood. Previous studies suggest the vasculature is involved in tissue injury. Here, we report that expression of Sparcl1, a secreted matricellular protein, is upregulated in pulmonary capillary endothelial cells (EC) during influenza-induced lung injury. Endothelial overexpression of SPARCL1 promotes detrimental lung inflammation, with SPARCL1 inducing 'M1-like' macrophages and related pro-inflammatory cytokines, while SPARCL1 deletion alleviates these effects. Mechanistically, SPARCL1 functions through TLR4 on macrophages in vitro, while TLR4 inhibition in vivo ameliorates excessive inflammation caused by endothelial Sparcl1 overexpression. Finally, SPARCL1 expression is increased in lung ECs from COVID-19 patients when compared with healthy donors, while fatal COVID-19 correlates with higher circulating SPARCL1 protein levels in the plasma. Our results thus implicate SPARCL1 as a potential prognosis biomarker for deadly COVID-19 pneumonia and as a therapeutic target for taming hyperinflammation in pneumonia.


Asunto(s)
COVID-19 , Células Endoteliales , Pulmón , Activación de Macrófagos , SARS-CoV-2 , Animales , Humanos , COVID-19/inmunología , COVID-19/virología , COVID-19/metabolismo , COVID-19/patología , Ratones , Células Endoteliales/metabolismo , Células Endoteliales/virología , Células Endoteliales/inmunología , SARS-CoV-2/fisiología , Pulmón/virología , Pulmón/patología , Pulmón/inmunología , Receptor Toll-Like 4/metabolismo , Receptor Toll-Like 4/genética , Proteínas de Unión al Calcio/metabolismo , Proteínas de Unión al Calcio/genética , Ratones Endogámicos C57BL , Neumonía Viral/inmunología , Neumonía Viral/patología , Neumonía Viral/virología , Neumonía Viral/metabolismo , Masculino , Macrófagos/metabolismo , Macrófagos/inmunología , Femenino , Ratones Noqueados , Proteínas de la Matriz Extracelular
8.
J Biomed Mater Res A ; 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38487970

RESUMEN

RNA-based therapeutics have gained traction for the prevention and treatment of a variety of diseases. However, their fragility and immunogenicity necessitate a drug carrier. Lipid nanoparticles (LNPs) have emerged as the predominant delivery vehicle for RNA therapeutics. An important component of LNPs is the ionizable lipid (IL), which is protonated in the acidic environment of the endosome, prompting cargo release into the cytosol. Currently, there is growing evidence that the structure of IL lipid tails significantly impacts the efficacy of LNP-mediated mRNA translation. Here, we optimized IL tail length for LNP-mediated delivery of three different mRNA cargos. Using C12-200, a gold standard IL, as a model, we designed a library of ILs with varying tail lengths and evaluated their potency in vivo. We demonstrated that small changes in lipophilicity can drastically increase or decrease mRNA translation. We identified that LNPs formulated with firefly luciferase mRNA (1929 base pairs) and C10-200, an IL with shorter tail lengths than C12-200, enhance liver transfection by over 10-fold. Furthermore, different IL tail lengths were found to be ideal for transfection of LNPs encapsulating mRNA cargos of varying sizes. LNPs formulated with erythropoietin (EPO), responsible for stimulating red blood cell production, mRNA (858 base pairs), and the C13-200 IL led to EPO translation at levels similar to the C12-200 LNP. The LNPs formulated with Cas9 mRNA (4521 base pairs) and the C9-200 IL induced over three times the quantity of indels compared with the C12-200 LNP. Our findings suggest that shorter IL tails may lead to higher transfection of LNPs encapsulating larger mRNAs, and that longer IL tails may be more efficacious for delivering smaller mRNA cargos. We envision that the results of this project can be utilized as future design criteria for the next generation of LNP delivery systems for RNA therapeutics.

9.
Int J Nanomedicine ; 19: 2655-2673, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38500680

RESUMEN

Introduction: Immunotherapy has revolutionized cancer treatment by harnessing the immune system to enhance antitumor responses while minimizing off-target effects. Among the promising cancer-specific therapies, tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) has attracted significant attention. Methods: Here, we developed an ionizable lipid nanoparticle (LNP) platform to deliver TRAIL mRNA (LNP-TRAIL) directly to the tumor microenvironment (TME) to induce tumor cell death. Our LNP-TRAIL was formulated via microfluidic mixing and the induction of tumor cell death was assessed in vitro. Next, we investigated the ability of LNP-TRAIL to inhibit colon cancer progression in vivo in combination with a TME normalization approach using Losartan (Los) or angiotensin 1-7 (Ang(1-7)) to reduce vascular compression and deposition of extracellular matrix in mice. Results: Our results demonstrated that LNP-TRAIL induced tumor cell death in vitro and effectively inhibited colon cancer progression in vivo, particularly when combined with TME normalization induced by treatment Los or Ang(1-7). In addition, potent tumor cell death as well as enhanced apoptosis and necrosis was found in the tumor tissue of a group treated with LNP-TRAIL combined with TME normalization. Discussion: Together, our data demonstrate the potential of the LNP to deliver TRAIL mRNA to the TME and to induce tumor cell death, especially when combined with TME normalization. Therefore, these findings provide important insights for the development of novel therapeutic strategies for the immunotherapy of solid tumors.


Asunto(s)
Neoplasias del Colon , Liposomas , Nanopartículas , Microambiente Tumoral , Animales , Ratones , Ligandos , Apoptosis , Neoplasias del Colon/tratamiento farmacológico , Neoplasias del Colon/genética , Factor de Necrosis Tumoral alfa , Ligando Inductor de Apoptosis Relacionado con TNF/metabolismo
10.
Nat Commun ; 15(1): 1762, 2024 Feb 26.
Artículo en Inglés | MEDLINE | ID: mdl-38409275

RESUMEN

The ionizable lipidoid is a key component of lipid nanoparticles (LNPs). Degradable lipidoids containing extended alkyl branches have received tremendous attention, yet their optimization and investigation are underappreciated. Here, we devise an in situ construction method for the combinatorial synthesis of degradable branched (DB) lipidoids. We find that appending branch tails to inefficacious lipidoids via degradable linkers boosts mRNA delivery efficiency up to three orders of magnitude. Combinatorial screening and systematic investigation of two libraries of DB-lipidoids reveal important structural criteria that govern their in vivo potency. The lead DB-LNP demonstrates robust delivery of mRNA therapeutics and gene editors into the liver. In a diet-induced obese mouse model, we show that repeated administration of DB-LNP encapsulating mRNA encoding human fibroblast growth factor 21 alleviates obesity and fatty liver. Together, we offer a construction strategy for high-throughput and cost-efficient synthesis of DB-lipidoids. This study provides insights into branched lipidoids for efficient mRNA delivery.


Asunto(s)
Nanopartículas , Animales , Ratones , Humanos , ARN Mensajero/genética , Nanopartículas/química , ARN Interferente Pequeño
11.
Proc Natl Acad Sci U S A ; 121(7): e2314747121, 2024 Feb 13.
Artículo en Inglés | MEDLINE | ID: mdl-38315853

RESUMEN

Macrophages are integral components of the innate immune system, playing a dual role in host defense during infection and pathophysiological states. Macrophages contribute to immune responses and aid in combatting various infections, yet their production of abundant proinflammatory cytokines can lead to uncontrolled inflammation and worsened tissue damage. Therefore, reducing macrophage-derived proinflammatory cytokine release represents a promising approach for treating various acute and chronic inflammatory disorders. However, limited macrophage-specific delivery vehicles have hindered the development of macrophage-targeted therapies. In this study, we screened a pool of 112 lipid nanoparticles (LNPs) to identify an optimal LNP formulation for efficient siRNA delivery. Subsequently, by conjugating the macrophage-specific antibody F4/80 to the LNP surface, we constructed MacLNP, an enhanced LNP formulation designed for targeted macrophage delivery. In both in vitro and in vivo experiments, MacLNP demonstrated a significant enhancement in targeting macrophages. Specifically, delivery of siRNA targeting TAK1, a critical kinase upstream of multiple inflammatory pathways, effectively suppressed the phosphorylation/activation of NF-kB. LNP-mediated inhibition of NF-kB, a key upstream regulator in the classic inflammatory signaling pathway, in the murine macrophage cell line RAW264.7 significantly reduced the release of proinflammatory cytokines after stimulation with the viral RNA mimic Poly(I:C). Finally, intranasal administration of MacLNP-encapsulated TAK1 siRNA markedly ameliorated lung injury induced by influenza infection. In conclusion, our findings validate the potential of targeted macrophage interventions in attenuating inflammatory responses, reinforcing the potential of LNP-mediated macrophage targeting to treat pulmonary inflammatory disorders.


Asunto(s)
Liposomas , Nanopartículas , Neumonía Viral , Ratones , Humanos , Animales , FN-kappa B/metabolismo , Lípidos/farmacología , Macrófagos/metabolismo , ARN Interferente Pequeño/metabolismo , Citocinas/metabolismo , Neumonía Viral/metabolismo
12.
Adv Mater ; 36(26): e2313226, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38419362

RESUMEN

Chimeric antigen receptor (CAR) T cell therapy has achieved remarkable clinical success in the treatment of hematological malignancies. However, producing these bespoke cancer-killing cells is a complicated ex vivo process involving leukapheresis, artificial T cell activation, and CAR construct introduction. The activation step requires the engagement of CD3/TCR and CD28 and is vital for T cell transfection and differentiation. Though antigen-presenting cells (APCs) facilitate activation in vivo, ex vivo activation relies on antibodies against CD3 and CD28 conjugated to magnetic beads. While effective, this artificial activation adds to the complexity of CAR T cell production as the beads must be removed prior to clinical implementation. To overcome this challenge, this work develops activating lipid nanoparticles (aLNPs) that mimic APCs to combine the activation of magnetic beads and the transfection capabilities of LNPs. It is shown that aLNPs enable one-step activation and transfection of primary human T cells with the resulting mRNA CAR T cells reducing tumor burden in a murine xenograft model, validating aLNPs as a promising platform for the rapid production of mRNA CAR T cells.


Asunto(s)
Células Presentadoras de Antígenos , Inmunoterapia Adoptiva , Nanopartículas , ARN Mensajero , Receptores Quiméricos de Antígenos , Linfocitos T , Humanos , Nanopartículas/química , Animales , Ratones , Células Presentadoras de Antígenos/inmunología , Inmunoterapia Adoptiva/métodos , Linfocitos T/inmunología , ARN Mensajero/genética , ARN Mensajero/metabolismo , Neoplasias/terapia , Neoplasias/inmunología , Inmunoterapia/métodos , Línea Celular Tumoral , Lípidos/química , Transfección/métodos , Liposomas
13.
Adv Drug Deliv Rev ; 207: 115194, 2024 04.
Artículo en Inglés | MEDLINE | ID: mdl-38342243

RESUMEN

Autoimmune disorders have risen to be among the most prevalent chronic diseases across the globe, affecting approximately 5-7% of the population. As autoimmune diseases steadily rise in prevalence, so do the number of potential therapeutic strategies to combat them. In recent years, fundamental research investigating autoimmune pathologies has led to the emergence of several cellular targets that provide new therapeutic opportunities. However, key challenges persist in terms of accessing and specifically combating the dysregulated, self-reactive cells while avoiding systemic immune suppression and other off-target effects. Fortunately, the continued advancement of nanomedicines may provide strategies to address these challenges and bring innovative autoimmunity therapies to the clinic. Through precise engineering and rational design, nanomedicines can possess a variety of physicochemical properties, surface modifications, and cargoes, allowing for specific targeting of therapeutics to pathological cell and organ types. These advances in nanomedicine have been demonstrated in cancer therapies and have the broad potential to advance applications in autoimmunity therapies as well. In this review, we focus on leveraging the power of nanomedicine for prevalent autoimmune disorders throughout the body. We expand on three key areas for the development of autoimmunity therapies - avoiding systemic immunosuppression, balancing interactions with the immune system, and elevating current platforms for delivering complex cargoes - and emphasize how nanomedicine-based strategies can overcome these barriers and enable the development of next-generation, clinically relevant autoimmunity therapies.


Asunto(s)
Enfermedades Autoinmunes , Neoplasias , Humanos , Nanomedicina , Autoinmunidad , Enfermedades Autoinmunes/tratamiento farmacológico , Sistema Inmunológico/patología , Terapia de Inmunosupresión , Neoplasias/tratamiento farmacológico , Neoplasias/patología
14.
Nat Biomed Eng ; 8(5): 513-528, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38378820

RESUMEN

The broader clinical use of bispecific T cell engagers for inducing anti-tumour toxicity is hindered by their on-target off-tumour toxicity and the associated neurotoxicity and cytokine-release syndrome. Here we show that the off-tumour toxicity of a supramolecular bispecific T cell engager binding to the T cell co-receptor CD3 and to the human epidermal growth factor receptor 2 on breast tumour cells can be halted by disengaging the T cells from the tumour cells via the infusion of the small-molecule drug amantadine, which disassembles the supramolecular aggregate. In mice bearing human epidermal growth factor receptor 2-expressing tumours and with a human immune system, high intravenous doses of such a 'switchable T cell nanoengager' elicited strong tumour-specific adaptive immune responses that prevented tumour relapse, while the infusion of amantadine restricted off-tumour toxicity, cytokine-release syndrome and neurotoxicity. Supramolecular chemistry may be further leveraged to control the anti-tumour activity and off-tumour toxicity of bispecific antibodies.


Asunto(s)
Amantadina , Anticuerpos Biespecíficos , Complejo CD3 , Linfocitos T , Animales , Humanos , Linfocitos T/inmunología , Linfocitos T/efectos de los fármacos , Anticuerpos Biespecíficos/farmacología , Anticuerpos Biespecíficos/inmunología , Ratones , Complejo CD3/inmunología , Amantadina/farmacología , Línea Celular Tumoral , Femenino , Receptor ErbB-2/inmunología , Receptor ErbB-2/metabolismo , Neoplasias de la Mama/inmunología , Neoplasias de la Mama/tratamiento farmacológico
15.
Sci Adv ; 10(9): eadj4678, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38416830

RESUMEN

Cancer immunity is subjected to spatiotemporal regulation by leukocyte interaction with neoplastic and stromal cells, contributing to immune evasion and immunotherapy resistance. Here, we identify a distinct mesenchymal-like population of endothelial cells (ECs) that form an immunosuppressive vascular niche in glioblastoma (GBM). We reveal a spatially restricted, Twist1/SATB1-mediated sequential transcriptional activation mechanism, through which tumor ECs produce osteopontin to promote immunosuppressive macrophage (Mφ) phenotypes. Genetic or pharmacological ablation of Twist1 reverses Mφ-mediated immunosuppression and enhances T cell infiltration and activation, leading to reduced GBM growth and extended mouse survival, and sensitizing tumor to chimeric antigen receptor T immunotherapy. Thus, these findings uncover a spatially restricted mechanism controlling tumor immunity and suggest that targeting endothelial Twist1 may offer attractive opportunities for optimizing cancer immunotherapy.


Asunto(s)
Neoplasias Encefálicas , Glioblastoma , Animales , Ratones , Glioblastoma/genética , Células Endoteliales/patología , Línea Celular Tumoral , Macrófagos , Terapia de Inmunosupresión , Neoplasias Encefálicas/genética
16.
Nat Commun ; 15(1): 1884, 2024 Feb 29.
Artículo en Inglés | MEDLINE | ID: mdl-38424061

RESUMEN

Lipid nanoparticles for delivering mRNA therapeutics hold immense promise for the treatment of a wide range of lung-associated diseases. However, the lack of effective methodologies capable of identifying the pulmonary delivery profile of chemically distinct lipid libraries poses a significant obstacle to the advancement of mRNA therapeutics. Here we report the implementation of a barcoded high-throughput screening system as a means to identify the lung-targeting efficacy of cationic, degradable lipid-like materials. We combinatorially synthesize 180 cationic, degradable lipids which are initially screened in vitro. We then use barcoding technology to quantify how the selected 96 distinct lipid nanoparticles deliver DNA barcodes in vivo. The top-performing nanoparticle formulation delivering Cas9-based genetic editors exhibits therapeutic potential for antiangiogenic cancer therapy within a lung tumor model in female mice. These data demonstrate that employing high-throughput barcoding technology as a screening tool for identifying nanoparticles with lung tropism holds potential for the development of next-generation extrahepatic delivery platforms.


Asunto(s)
ADN , Nanopartículas , Femenino , Animales , Ratones , ARN Mensajero/genética , Pulmón , Lípidos
17.
Nat Commun ; 15(1): 590, 2024 Jan 18.
Artículo en Inglés | MEDLINE | ID: mdl-38238326

RESUMEN

A safe and effective vaccine with long-term protection against SARS-CoV-2 variants of concern (VOCs) is a global health priority. Here, we develop lipid nanoparticles (LNPs) to provide safe and effective delivery of plasmid DNA (pDNA) and show protection against VOCs in female small animal models. Using a library of LNPs encapsulating unique barcoded DNA (b-DNA), we screen for b-DNA delivery after intramuscular administration. The top-performing LNPs are further tested for their capacity of pDNA uptake in antigen-presenting cells in vitro. The lead LNP is used to encapsulate pDNA encoding the HexaPro version of SARS-CoV-2 spike (LNP-HPS) and immunogenicity and protection is tested in vivo. LNP-HPS elicit a robust protective effect against SARS-CoV-2 Gamma (P.1), correlating with reduced lethality, decreased viral load in the lungs and reduced lung damage. LNP-HPS induce potent humoral and T cell responses against P.1, and generate high levels of neutralizing antibodies against P.1 and Omicron (B.1.1.529). Our findings indicate that the protective efficacy and immunogenicity elicited by LNP-HPS are comparable to those achieved by the approved COVID-19 vaccine from Biontech/Pfizer in animal models. Together, these findings suggest that LNP-HPS hold great promise as a vaccine candidate against VOCs.


Asunto(s)
COVID-19 , ADN Forma B , Vacunas de ADN , Femenino , Animales , Humanos , SARS-CoV-2/genética , Vacunas de ADN/genética , Nanovacunas , Vacunas contra la COVID-19 , COVID-19/prevención & control , ADN , Anticuerpos Neutralizantes , Anticuerpos Antivirales
19.
Nano Lett ; 24(5): 1477-1486, 2024 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-38259198

RESUMEN

Lipid nanoparticle (LNP)-mediated nucleic acid therapies, including mRNA protein replacement and gene editing therapies, hold great potential in treating neurological disorders including neurodegeneration, brain cancer, and stroke. However, delivering LNPs across the blood-brain barrier (BBB) after systemic administration remains underexplored. In this work, we engineered a high-throughput screening transwell platform for the BBB (HTS-BBB), specifically optimized for screening mRNA LNPs. Unlike most transwell assays, which only assess transport across an endothelial monolayer, HTS-BBB simultaneously measures LNP transport and mRNA transfection of the endothelial cells themselves. We then use HTS-BBB to screen a library of 14 LNPs made with structurally diverse ionizable lipids and demonstrate it is predictive of in vivo performance by validating lead candidates for mRNA delivery to the mouse brain after intravenous injection. Going forward, this platform could be used to screen large libraries of brain-targeted LNPs for a range of protein replacement and gene editing applications.


Asunto(s)
Barrera Hematoencefálica , Liposomas , Nanopartículas , Animales , Ratones , Barrera Hematoencefálica/metabolismo , Células Endoteliales/metabolismo , ARN Mensajero/genética , Lípidos , Transfección , ARN Interferente Pequeño/genética
20.
Sci Transl Med ; 16(732): eadg6229, 2024 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-38295183

RESUMEN

Disruption of pulmonary vascular homeostasis is a central feature of viral pneumonia, wherein endothelial cell (EC) death and subsequent angiogenic responses are critical determinants of the outcome of severe lung injury. A more granular understanding of the fundamental mechanisms driving reconstitution of lung endothelium is necessary to facilitate therapeutic vascular repair. Here, we demonstrated that TGF-ß signaling through TGF-ßR2 (transforming growth factor-ß receptor 2) is activated in pulmonary ECs upon influenza infection, and mice deficient in endothelial Tgfbr2 exhibited prolonged injury and diminished vascular repair. Loss of endothelial Tgfbr2 prevented autocrine Vegfa (vascular endothelial growth factor α) expression, reduced endothelial proliferation, and impaired renewal of aerocytes thought to be critical for alveolar gas exchange. Angiogenic responses through TGF-ßR2 were attributable to leucine-rich α-2-glycoprotein 1, a proangiogenic factor that counterbalances canonical angiostatic TGF-ß signaling. Further, we developed a lipid nanoparticle that targets the pulmonary endothelium, Lung-LNP (LuLNP). Delivery of Vegfa mRNA, a critical TGF-ßR2 downstream effector, by LuLNPs improved the impaired regeneration phenotype of EC Tgfbr2 deficiency during influenza injury. These studies defined a role for TGF-ßR2 in lung endothelial repair and demonstrated efficacy of an efficient and safe endothelial-targeted LNP capable of delivering therapeutic mRNA cargo for vascular repair in influenza infection.


Asunto(s)
Gripe Humana , Humanos , Ratones , Animales , Receptor Tipo II de Factor de Crecimiento Transformador beta , Factor A de Crecimiento Endotelial Vascular , Pulmón/metabolismo , Factor de Crecimiento Transformador beta/metabolismo , ARN Mensajero
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA