Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Más filtros

Base de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Environ Res ; 260: 119606, 2024 Jul 14.
Artículo en Inglés | MEDLINE | ID: mdl-39004395

RESUMEN

Due to the imperative global energy transition crisis, hydrogen storage and adsorption technologies are becoming popular with the growing hydrogen economy. Recently, complex hydrides have been one of the most reliable materials for storing and transporting hydrogen gas to various fuel cells to generate clean energy with zero carbon emissions. With the ever-increasing carbon emissions, it is necessary to substitute the current energy sources with green hydrogen-based efficient energy-integrated systems. Herein, we propose an input-output model that comprehends complex hydrides such as lithium and magnesium alanates, amides and borohydrides to predict, estimate, and directly analyse hydrogen storage and adsorption. A critical and thorough comparative analysis of the respective complex hydrides for hydrogen adsorption and storage is discussed, elucidating the storage applications in water bodies. Several industrial scale-up processes, economic analysis, and plant design of hydrogen storage and adsorption approaches are suggested through volumetric and gravimetric calculations.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA