Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
1.
J Vet Med Sci ; 86(7): 824-827, 2024 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-38839347

RESUMEN

The expression of nicotinic acetylcholine receptor (nAChR) subunits on various immune cells suggests their involvement in allergic rhinitis. However, how exactly they contribute to this pathogenesis is not yet confirmed. Our present study examined the therapeutic potential of GTS-21, an α7 nAChR agonist, for treating allergic rhinitis by employing its mouse models. GTS-21 treatment reduced allergen-induced immediate nasal response in ovalbumin (OVA)-sensitized model. However, nasal hyperresponsiveness or eosinophil infiltration elicited in either the OVA-sensitized or T helper 2 cell-transplanted model was not affected by GTS-21. GTS-21 did not alter allergen-induced passive cutaneous anaphylaxis response in anti-dinitrophenyl IgE-sensitized mice. This evidence implies GTS-21's potential to alleviate allergic rhinitis without perturbing T cells or mast cells.


Asunto(s)
Alérgenos , Modelos Animales de Enfermedad , Ratones Endogámicos BALB C , Ovalbúmina , Rinitis Alérgica , Receptor Nicotínico de Acetilcolina alfa 7 , Animales , Rinitis Alérgica/tratamiento farmacológico , Receptor Nicotínico de Acetilcolina alfa 7/agonistas , Femenino , Ratones , Piridinas/farmacología , Piridinas/uso terapéutico , Agonistas Nicotínicos/uso terapéutico , Agonistas Nicotínicos/farmacología , Compuestos de Bencilideno/farmacología , Compuestos de Bencilideno/uso terapéutico
2.
Oncology ; 2024 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-38442705

RESUMEN

INTRODUCTION: Nuclear envelope spectrin repeat protein (Nesprin) 1 encoded by SYNE1, crucially regulates the morphology and functions of the cell. Mutations in the SYNE1 gene are associated with various diseases; however, their significance in renal cell carcinoma (RCC) remains unknown. In this study, we have investigated the association of SYNE1/Nesprin1 with the progression and prognosis of clear cell RCC (ccRCC). METHODS: In silico analyses of publicly available datasets of patients with RCC were performed. Based on the cohort data, Nesprin1 expression in nephrectomized tissue samples acquired from patients with ccRCC was analyzed using immunohistochemical staining. The invasion, migration, and proliferation of the SYNE1-knockdown human RCC cell lines were analyzed in vitro; moreover, RNA sequencing and Gene Set Enrichment Analysis were conducted to study the molecular mechanism underlying the association of SYNE1/Nesprin1 with prognosis of RCC. RESULTS: Patients with RCC-associated SYNE1 gene mutations exhibited significantly worse overall and progression-free survivals. Patients with Nesprin1-negative ccRCC tumors exhibit significantly poorer overall, cancer-specific, and recurrence-free survival rates than those recorded in the Nesprin1-positive group. SYNE1 knockdown enhanced the invasion and migration of RCC cells, however, it did not influence the proliferation of cells. RNA sequencing and Gene Set Enrichment Analysis revealed that SYNE1 knockdown significantly altered the expression of genes associated with oxidative phosphorylation. Consistently, patients with RCC exhibiting low SYNE1 expression, who were treated with the vascular endothelial growth factor receptor inhibitor sunitinib, had worse progression-free survival. CONCLUSIONS: The results indicate that the expression of SYNE1/Nesprin1 and SYNE1 mutations in patients with RCC are closely linked to their prognosis and responsiveness to sunitinib treatment.

3.
J Clin Invest ; 133(22)2023 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-37966118

RESUMEN

In vitro fertilization (IVF) and intracytoplasmic sperm injection (ICSI) are 2 major assisted reproductive techniques (ARTs) used widely to treat infertility. Recently, spermatogonial transplantation emerged as a new ART to restore fertility to young patients with cancer after cancer therapy. To examine the influence of germ cell manipulation on behavior of offspring, we produced F1 offspring by a combination of two ARTs, spermatogonial transplantation and ICSI. When these animals were compared with F1 offspring produced by ICSI using fresh wild-type sperm, not only spermatogonial transplantation-ICSI mice but also ICSI-only control mice exhibited behavioral abnormalities, which persisted in the F2 generation. Furthermore, although these F1 offspring appeared normal, F2 offspring produced by IVF using F1 sperm and wild-type oocytes showed various types of congenital abnormalities, including anophthalmia, hydrocephalus, and missing limbs. Therefore, ARTs can induce morphological and functional defects in mice, some of which become evident only after germline transmission.


Asunto(s)
Infertilidad , Neoplasias , Humanos , Masculino , Animales , Ratones , Inyecciones de Esperma Intracitoplasmáticas/efectos adversos , Inyecciones de Esperma Intracitoplasmáticas/métodos , Semen , Fertilización In Vitro/métodos , Neoplasias/etiología
5.
Sci Rep ; 13(1): 6468, 2023 05 08.
Artículo en Inglés | MEDLINE | ID: mdl-37156933

RESUMEN

The mechanisms of immunity linked to biological evolution are crucial for understanding animal morphogenesis, organogenesis, and biodiversity. The nuclear factor of activated T cells (NFAT) family consists of five members (NFATc1-c4, 5) with different functions in the immune system. However, the evolutionary dynamics of NFATs in vertebrates has not been explored. Herein, we investigated the origin and mechanisms underlying the diversification of NFATs by comparing the gene, transcript and protein sequences, and chromosome information. We defined an ancestral origin of NFATs during the bilaterian development, dated approximately 650 million years ago, where NFAT5 and NFATc1-c4 were derived independently. The conserved parallel evolution of NFATs in multiple species was probably attributed to their innate nature. Conversely, frequent gene duplications and chromosomal rearrangements in the recently evolved taxa have suggested their roles in the adaptive immune evolution. A significant correlation was observed between the chromosome rearrangements with gene duplications and the structural fixation changes in vertebrate NFATs, suggesting their role in NFAT diversification. Remarkably, a conserved gene structure around NFAT genes with vertebrate evolutionary-related breaking points indicated the inheritance of NFATs with their neighboring genes as a unit. The close relationship between NFAT diversification and vertebrate immune evolution was suggested.


Asunto(s)
Núcleo Celular , Vertebrados , Animales , Vertebrados/genética , Núcleo Celular/metabolismo , Cromosomas , Duplicación de Gen , Linfocitos T , Evolución Molecular , Filogenia
6.
Exp Anim ; 72(4): 454-459, 2023 Nov 09.
Artículo en Inglés | MEDLINE | ID: mdl-37100620

RESUMEN

Nuclear factor of activated T cells (NFAT) is a transcription factor essential for immunological and other biological responses. To develop analyzing system for NFAT activity in vitro and in vivo, we generated reporter mouse lines introduced with NFAT-driven enhanced green fluorescent protein (EGFP) expressing gene construct. Six tandem repeats of -286 to -265 of the human IL2 gene to which NFAT binds in association with its co-transcription factor, activator protein (AP)-1, was conjunct with thymidine kinase minimum promoter and following EGFP coding sequence. Upon introduction of the resulting reporter cassette into C57BL/6 fertilized eggs, the transgenic mice were obtained. Among 7 transgene-positive mice in 110 mice bone, 2 mice showed the designated reporter mouse character. Thus, the EGFP fluorescence of CD4+ and CD8+ T cells in these mice was enhanced by stimulation through CD3 and CD28. Each of phorbol 12-myristate 13-acetate (PMA) and ionomycin (IOM) stimulation weakly but their combined stimulation strongly enhanced EGFP expression. The stimulation-induced EGFP upregulation was also observed following T cell subset differentiation in a different manner. The EGFP induction by PMA + IOM stimulation was more potent than that by CD3/CD28 stimulation in helper T (Th)1, Th2, Th9, and regulatory T cells, while both stimulation conditions displayed the equivalent EGFP induction in Th17 cells. Our NFAT reporter mouse lines are useful for analyzing stimulation-induced transcriptional activation mediated by NFAT in cooperation with AP-1 in T cells.


Asunto(s)
Antígenos CD28 , Linfocitos T CD8-positivos , Ratones , Humanos , Animales , Antígenos CD28/genética , Antígenos CD28/metabolismo , Linfocitos T CD8-positivos/metabolismo , Ratones Endogámicos C57BL , Regulación de la Expresión Génica , Factor de Transcripción AP-1/genética , Factor de Transcripción AP-1/metabolismo , Factores de Transcripción NFATC/genética , Factores de Transcripción NFATC/metabolismo , Ratones Transgénicos , Activación de Linfocitos
7.
Cancer Sci ; 114(2): 436-448, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36178067

RESUMEN

The carcinogenesis and progression of renal cell carcinoma (RCC), a heterogeneous cancer derived from renal tubular epithelial cells, is closely related to oxidative stress responses (OSRs). Oxidative stress responses participate in various biological processes related to the metabolism and metastatic potential of cancer such as inflammation, epithelial-mesenchymal transition (EMT), and angiogenesis. In this study, we investigated the role of broad complex-tramtrack-bric-a-brac and cap 'n' collar homology 1 (BACH1), a key transcription factor for OSRs, in clear cell RCC (ccRCC) development and prognosis. The poor prognosis and elevation of serum inflammation markers in nephrectomized ccRCC patients were correlated with the intratumor expression of BACH1 accompanied by a downregulation of heme oxygenase-1. BACH1 contributes to the invasion and migration abilities of RCC cell lines without affecting their proliferation in vitro. In contrast, BACH1 contributes to tumor progression in vivo, in relation to OSRs with the activation of EMT-related pathways. BACH1 involvement in other OSR-linked pathways, including inflammatory responses, angiogenesis, and mTOR signaling, was further revealed by RNA sequencing analysis of BACH1-knockdown cells. In conclusion, the crucial role of BACH1 in the pathogenesis and poor prognosis of ccRCC through the promotion of OSRs is suggested.


Asunto(s)
Carcinoma de Células Renales , Neoplasias Renales , Humanos , Carcinoma de Células Renales/patología , Estrés Oxidativo , Pronóstico , Biomarcadores , Neoplasias Renales/patología , Inflamación/genética , Proliferación Celular/genética , Línea Celular Tumoral , Movimiento Celular/genética , Regulación Neoplásica de la Expresión Génica , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/genética , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/metabolismo
8.
J Pharmacol Sci ; 150(4): 275-278, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36344050

RESUMEN

T cells play an essential role in the development of allergen-induced nasal hyperresponsiveness (NHR), a pathophysiological response in allergic rhinitis. The effects of histamine H1-receptor antagonists (antihistamines) on murine NHR models were investigated. Intragastric epinastine, fexofenadine, and loratadine administration suppressed allergen-induced immediate nasal response but not NHR in immunized mice. Regardless of the alleviation of stimulation-induced Th2 cytokine expression by loratadine and desloratadine in vitro, allergen-induced NHR and nasal eosinophil infiltration in Th2 cell-transferred mice were unaffected by loratadine in vivo. This influence on T cell-mediated NHR was excluded from the pharmacological effects of antihistamines.


Asunto(s)
Antagonistas de los Receptores Histamínicos H1 , Loratadina , Ratones , Animales , Antagonistas de los Receptores Histamínicos H1/farmacología , Loratadina/farmacología , Loratadina/uso terapéutico , Alérgenos , Histamina , Modelos Animales de Enfermedad
9.
Biomolecules ; 12(5)2022 05 06.
Artículo en Inglés | MEDLINE | ID: mdl-35625602

RESUMEN

Th17 cells are implicated in allergic inflammatory diseases, including allergic rhinitis (AR), though the effect of steroids on Th17 cell-dependent nasal responses is unclear. Herein, we investigated a nasal inflammation model elicited by allergen provocation in mice infused with Th17 cells and its responsiveness against steroid treatment. We transferred BALB/c mice with Th17 cells, which were differentiated in vitro and showed a specific reaction to ovalbumin (OVA). We challenged the transferred mice by intranasal injection of OVA and to some of them, administered dexamethasone (Dex) subcutaneously in advance. Then, we assessed immediate nasal response (INR), nasal hyperresponsiveness (NHR), and inflammatory cell infiltration into the nasal mucosa. The significant nasal inflammatory responses with massive neutrophil accumulation, INR, and NHR were induced upon allergen challenge. Allergen-induced INR and NHR were significantly suppressed by Dex treatment. This study suggested the effectiveness of steroids on Th17 cell-mediated nasal responses in AR.


Asunto(s)
Rinitis Alérgica , Células Th17 , Alérgenos , Animales , Ratones , Mucosa Nasal , Ovalbúmina , Rinitis Alérgica/tratamiento farmacológico
10.
Genes Dev ; 36(7-8): 483-494, 2022 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-35483741

RESUMEN

Genomic imprinting regulates parental origin-dependent monoallelic gene expression. It is mediated by either germline differential methylation of DNA (canonical imprinting) or oocyte-derived H3K27me3 (noncanonical imprinting) in mice. Depletion of Eed, an essential component of Polycomb repressive complex 2, results in genome-wide loss of H3K27me3 in oocytes, which causes loss of noncanonical imprinting (LOI) in embryos. Although Eed maternal KO (matKO) embryos show partial lethality after implantation, it is unknown whether LOI itself contributes to the developmental phenotypes of these embryos, which makes it unclear whether noncanonical imprinting is developmentally relevant. Here, by combinatorial matKO of Xist, a noncanonical imprinted gene whose LOI causes aberrant transient maternal X-chromosome inactivation (XCI) at preimplantation, we show that prevention of the transient maternal XCI greatly restores the development of Eed matKO embryos. Moreover, we found that the placentae of Eed matKO embryos are remarkably enlarged in a manner independent of Xist LOI. Heterozygous deletion screening of individual autosomal noncanonical imprinted genes suggests that LOI of the Sfmbt2 miRNA cluster chromosome 2 miRNA cluster (C2MC), solute carrier family 38 member 4 (Slc38a4), and Gm32885 contributes to the placental enlargement. Taken together, our study provides evidence that Xist imprinting sustains embryonic development and that autosomal noncanonical imprinting restrains placental overgrowth.


Asunto(s)
MicroARNs , ARN Largo no Codificante , Animales , Desarrollo Embrionario/genética , Femenino , Histonas/metabolismo , Ratones , Placenta , Embarazo , ARN Largo no Codificante/genética , Proteínas Represoras/genética , Inactivación del Cromosoma X
11.
Int J Mol Sci ; 23(3)2022 Feb 04.
Artículo en Inglés | MEDLINE | ID: mdl-35163704

RESUMEN

A contribution of the cholinergic system to immune cell function has been suggested, though the role of nicotine and its receptors in T cells, especially regulatory T (Treg) cells, is unclear. We herein investigated the expression and function of nicotinic acetylcholine receptors (nAChRs) in murine-induced Treg (iTreg) cells. Upon differentiation of naive BALB/c T cells into iTreg cells and other T-cell subsets, the effect of nicotine on cytokine production and proliferation of iTreg cells was examined. The expression of nAChRs and its regulatory mechanisms were comparatively analyzed among T-cell subsets. Stimulation-induced transforming growth factor-ß1 (TGF-ß1) production of iTreg cells was suppressed by nicotine, whereas interleukin (IL)-10 production and proliferation was not affected. α2-, α5-, α9-, and ß2-nAChRs were differentially expressed in naive, Th1, Th2, Th9, Th17, and iTreg cells. Among these cell types, the α9-nAChR was particularly upregulated in iTreg cells via its gene promoter, but not through tri-methylation at the 4th lysine residue of the histone H3-dependent mechanisms. We conclude that the immunoregulatory role of Treg cells is modified by the cholinergic system, probably through the characteristic expression of nAChRs.


Asunto(s)
Código de Histonas , Receptores Nicotínicos/genética , Linfocitos T Reguladores/metabolismo , Animales , Regulación de la Expresión Génica , Ratones , Ratones Endogámicos BALB C
12.
Genes Dev ; 36(1-2): 84-102, 2022 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-34992147

RESUMEN

The placenta is a highly evolved, specialized organ in mammals. It differs from other organs in that it functions only for fetal maintenance during gestation. Therefore, there must be intrinsic mechanisms that guarantee its unique functions. To address this question, we comprehensively analyzed epigenomic features of mouse trophoblast stem cells (TSCs). Our genome-wide, high-throughput analyses revealed that the TSC genome contains large-scale (>1-Mb) rigid heterochromatin architectures with a high degree of histone H3.1/3.2-H3K9me3 accumulation, which we termed TSC-defined highly heterochromatinized domains (THDs). Importantly, depletion of THDs by knockdown of CAF1, an H3.1/3.2 chaperone, resulted in down-regulation of TSC markers, such as Cdx2 and Elf5, and up-regulation of the pluripotent marker Oct3/4, indicating that THDs maintain the trophoblastic nature of TSCs. Furthermore, our nuclear transfer technique revealed that THDs are highly resistant to genomic reprogramming. However, when H3K9me3 was removed, the TSC genome was fully reprogrammed, giving rise to the first TSC cloned offspring. Interestingly, THD-like domains are also present in mouse and human placental cells in vivo, but not in other cell types. Thus, THDs are genomic architectures uniquely developed in placental lineage cells, which serve to protect them from fate reprogramming to stably maintain placental function.


Asunto(s)
Histonas , Trofoblastos , Animales , Diferenciación Celular/genética , Femenino , Histonas/genética , Histonas/metabolismo , Mamíferos , Ratones , Placenta , Embarazo , Células Madre , Trofoblastos/metabolismo
13.
Asia Pac Allergy ; 11(3): e25, 2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-34386401

RESUMEN

BACKGROUND: Th9 cells have been implicated in the development of allergic inflammation, though its contribution to allergic rhinitis and the effect of steroid on Th9 cell-mediated nasal responses are unclear. OBJECTIVE: In this study, allergen-induced nasal inflammatory responses and their steroid responsiveness were investigated in ovalbumin (OVA)-specific Th9 cell-transferred mice. METHODS: BALB/c mice were transferred with in vitro-differentiated Th9 cells and challenged by intranasal injection of OVA with or without subcutaneous administration of dexamethasone (Dex). Then, the infiltration of inflammatory cells in the nasal mucosa and nasal hyperresponsiveness (NHR) was assessed. RESULTS: The significant NHR accompanied by nasal infiltration of eosinophils as well as allergen-specific T cells was induced in Th9 cell-transferred mice upon allergen challenge. These responses were strongly suppressed by the treatment with Dex. CONCLUSION: The participation of Th9 cells in the pathogenesis of allergic rhinitis was suggested.

14.
Asia Pac Allergy ; 11(3): e33, 2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-34386409

RESUMEN

BACKGROUND: The activation of Th2 cells that play a pivotal role in the development of allergic eosinophilic inflammation is regulated by an L-type amino acid transporter (LAT) 1. However, the contribution of LAT1 to the pathogenesis of Th2 cell-mediated airway inflammation has not been investigated. OBJECTIVE: In this study, we investigated the effect of a LAT1 inhibitor, JPH203, on Th2 cell-mediated airway eosinophilic inflammation. METHODS: BALB/c mice were transferred with ovalbumin (OVA)-specific Th2 cell and challenged by corresponding allergen with or without administration of JPH203. Then, the infiltration of inflammatory cells including eosinophils and allergen-specific Th2 cells in the lungs and bronchial hyperresponsiveness (BHR) was assessed. RESULTS: Inflammatory responses in the lungs with massive accumulation of eosinophils and BHR were induced in Th2 cell-transferred mice upon challenge with OVA. The treatment with JPH203 significantly suppressed the allergen-induced BHR but not eosinophil infiltration. The infused Th2 cells were also accumulated in the lungs upon allergen challenge, though the response was not affected by JPH203 treatment. CONCLUSION: JPH203 suppressed Th2 cell-mediated BHR through the mechanisms independently of the lung accumulation of eosinophils and Th2 cells.

15.
J Radiat Res ; 62(Supplement_1): i53-i63, 2021 May 05.
Artículo en Inglés | MEDLINE | ID: mdl-33978171

RESUMEN

Following the development of genome editing technology, it has become more feasible to create genetically modified animals such as knockout (KO), knock-in, and point-mutated animals. The genome-edited animals are useful to investigate the roles of various functional genes in many fields of biological science including radiation research. Nevertheless, some researchers may experience difficulty in generating genome-edited animals, probably due to the requirement for equipment and techniques for embryo manipulation and handling. Furthermore, after obtaining F0 generation, genome-edited animals generally need to be expanded and maintained for analyzing the target gene function. To investigate genes essential for normal birth and growth, the generation of conditional KO (cKO) animals in which a tissue- or stage-specific gene mutation can be introduced is often required. Here, we describe the basic principle and application of genome editing technology including zinc-finger nuclease, transcription-activator-like effector nuclease, and clustered regularly interspaced short palindromic repeat (CRISPR)/CRISPR associated protein (Cas) systems. Recently advanced developmental biology methods have enabled application of the technology, especially CRISPR/Cas, to zygotes, leading to the prompt production of genome-edited animals. For pre-implantation embryos, genome editing via oviductal nucleic acid delivery has been developed as an embryo manipulation- or handling-free method. Examining the gene function at F0 generation is becoming possible by employing triple-target CRISPR technology. This technology, in combination with a blastocyst complementation method enables investigation of even birth- and growth-responsible genes without establishing cKO strains. We hope that this review is helpful for understanding and expanding genome editing-related technology and for progressing radiation research.


Asunto(s)
Biología Evolutiva , Edición Génica , Radiación , Investigación , Animales , Sistemas CRISPR-Cas/genética , Genoma , Humanos
16.
Biol Reprod ; 104(1): 223-233, 2021 01 04.
Artículo en Inglés | MEDLINE | ID: mdl-32965494

RESUMEN

Conditional knockout (cKO) mice have contributed greatly to understanding the tissue- or stage-specific functions of genes in vivo. However, the current cKO method requires considerable time and effort because of the need to generate two gene-modified mouse strains (Cre transgenic and loxP knockin) for crossing. Here, we examined whether we could analyze the germ cell-related functions of embryonic lethal genes in F0 chimeric mice by restricting the origin of germ cells to mutant embryonic stem cells (ESCs). We confirmed that the full ESC origin of spermatozoa in fertile chimeric mice was achieved by the CRISPR/Cas9 system using three guide RNAs targeting Nanos3, which induced germ cell depletion in the host blastocyst-derived tissues. Among these fertile chimeric mice, those from male ESCs with a Dnmt3b mutation, which normally causes embryo death, also produced F1 mice derived exclusively from the mutant ESCs. Thus, our new chimeric strategy readily revealed that Dnmt3b is dispensable for male germ cell development, in agreement with a previous cKO study. Our new approach enables us to analyze the germ cell functions of embryonic lethal genes in the F0 generation without using the current cKO method.


Asunto(s)
Quimerismo , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas , Células Madre Embrionarias/citología , Células Germinativas/citología , Espermatozoides/citología , Animales , Blastocisto/citología , Blastocisto/metabolismo , Quimera , Células Madre Embrionarias/metabolismo , Células Germinativas/metabolismo , Masculino , Ratones , Ratones Noqueados , Espermatozoides/metabolismo
17.
Int J Mol Sci ; 21(20)2020 Oct 11.
Artículo en Inglés | MEDLINE | ID: mdl-33050549

RESUMEN

The essential contribution of CD4+ T cells in allergic airway diseases has been demonstrated, especially by using various murine models of antigen-induced airway inflammation. In addition to antigen-immunized mouse models employing mast cell-deficient mice and CD4+ T cell-depleting procedure, antigen-specific CD4+ T cell transfer models have revealed the possible development of allergic inflammation solely dependent on CD4+ T cells. Regardless of the classical Th1/Th2 theory, various helper T cell subsets have the potential to induce different types of allergic inflammation. T cell receptor (TCR)-transgenic (Tg) mice have been used for investigating T cell-mediated immune responses. Besides, we have recently generated cloned mice from antigen-specific CD4+ T cells through somatic cell nuclear transfer. In contrast to TCR-Tg mice that express artificially introduced TCR, the cloned mice express endogenously regulated antigen-specific TCR. Upon antigen exposure, the mite antigen-reactive T cell-cloned mice displayed strong airway inflammation accompanied by bronchial hyperresponsiveness in a short time period. Antigen-specific CD4+ T cell-cloned mice are expected to be useful for investigating the detailed role of CD4+ T cells in various allergic diseases and for evaluating novel anti-allergic drugs.


Asunto(s)
Hiperreactividad Bronquial/etiología , Hiperreactividad Bronquial/metabolismo , Linfocitos T CD4-Positivos/inmunología , Linfocitos T CD4-Positivos/metabolismo , Susceptibilidad a Enfermedades , Animales , Biomarcadores , Hiperreactividad Bronquial/diagnóstico , Comunicación Celular , Modelos Animales de Enfermedad , Susceptibilidad a Enfermedades/inmunología , Humanos , Inmunoglobulina E/inmunología , Inflamación/etiología , Inflamación/metabolismo , Inflamación/patología , Mastocitos/inmunología , Mastocitos/metabolismo , Ratones , Ratones Transgénicos , Receptores de Antígenos de Linfocitos T/metabolismo , Transducción de Señal , Especificidad del Receptor de Antígeno de Linfocitos T , Subgrupos de Linfocitos T/inmunología , Subgrupos de Linfocitos T/metabolismo
18.
Nat Commun ; 11(1): 2150, 2020 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-32358519

RESUMEN

Somatic cell nuclear transfer (SCNT) in mammals is an inefficient process that is frequently associated with abnormal phenotypes, especially in placentas. Recent studies demonstrated that mouse SCNT placentas completely lack histone methylation (H3K27me3)-dependent imprinting, but how it affects placental development remains unclear. Here, we provide evidence that the loss of H3K27me3 imprinting is responsible for abnormal placental enlargement and low birth rates following SCNT, through upregulation of imprinted miRNAs. When we restore the normal paternal expression of H3K27me3-dependent imprinted genes (Sfmbt2, Gab1, and Slc38a4) in SCNT placentas by maternal knockout, the placentas remain enlarged. Intriguingly, correcting the expression of clustered miRNAs within the Sfmbt2 gene ameliorates the placental phenotype. Importantly, their target genes, which are confirmed to cause SCNT-like placental histology, recover their expression level. The birth rates increase about twofold. Thus, we identify loss of H3K27me3 imprinting as an epigenetic error that compromises embryo development following SCNT.


Asunto(s)
Histonas/metabolismo , MicroARNs/genética , Placenta/metabolismo , Proteínas Represoras/genética , Animales , Reprogramación Celular/genética , Reprogramación Celular/fisiología , Femenino , Impresión Genómica , Ratones , Familia de Multigenes/genética , Embarazo , ARN no Traducido/genética , ARN no Traducido/metabolismo
19.
Front Microbiol ; 11: 502, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32296404

RESUMEN

The thermal resistance of fermenting microbes is a key characteristic of stable fermentation at high temperatures. Therefore, the effects of various metal ions on the growth of Zymomonas mobilis TISTR 548, a thermotolerant ethanologenic bacterium, at a critical high temperature (CHT) were examined. Addition of Mg2+ and K+ increased CHT by 1°C, but the effects of the addition of Mn2+, Ni2+, Co2+, Al3+, Fe3+, and Zn2+ on CHT were negligible. To understand the physiological functions associated with the addition of Mg2+ or K+, cell morphology, intracellular reactive oxygen species (ROS) level, and ethanol productivity were investigated at 39°C (i.e., above CHT). Cell elongation was repressed by Mg2+, but not by K+. Addition of both metals reduced intracellular ROS level, with only K+ showing the highest reduction strength, followed by both metals and only Mg2+. Additionally, ethanol productivity was recovered with the addition of both metals. Moreover, the addition of Mg2+ or K+ at a non-permissive temperature in 26 thermosensitive, single gene-disrupted mutants of Z. mobilis TISTR 548 revealed that several mutants showed metal ion-specific growth improvement. Remarkably, K+ repressed growth of two mutants. These results suggest that K+ and Mg2+ enhance cell growth at CHT via different mechanisms, which involve the maintenance of low intracellular ROS levels.

20.
Sex Dev ; 14(1-6): 40-50, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33690235

RESUMEN

SOX17 activity in the uterine epithelium is essential for the implantation of mouse embryos. Previously, we demonstrated that female Sox17 heterozygous mutant mice are subfertile, and 2 active copies of Sox17 are required for the proper implantation of mouse embryos. To understand which implantation step is most sensitive to the Sox17 gene dosage, we comprehensively investigated the phenotypes and RNA transcriptomes of Sox17 heterozygous mutant mice. Uterine Sox17 expression drastically changed according to estrous cycle and during early pregnancy. The highest Sox17 expression was observed during the receptive period for blastocyst implantation. Sox17 heterozygous uterine epithelia showed ectopic high-level expression of SOX9, another SOX factor that is normally expressed in the uterine gland. Three-dimensional analysis of the uterus on day 5 of pregnancy revealed no crypt formation near the healthy blastocysts in the Sox17 heterozygous uterine epithelium, suggesting that early defects in embryo homing had occurred. Global transcriptional analysis revealed that the expression of Amphiregulin (Areg), a gene encoding a heparin-binding epidermal growth factor receptor ligand, was decreased drastically in Sox17+/- uterine epithelia. These data imply that full Sox17 activity is required to promote early crypt formation through proper regulation of SOX9 and AREG expression at the implantation site.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA