Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
Haematologica ; 109(1): 129-142, 2024 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-37706355

RESUMEN

Modulating an immune response in opposite directions represents the holy grail in allogeneic hematopoietic stem cell transplantation (allo-HSCT) to avoid insufficient reactivity of donor T cells and hematologic malignancy relapse while controlling the potential development of graft-versus-host disease (GVHD), in which donor T cells attack the recipient's tissues. IL-2/anti-IL-2 complexes (IL-2Cx) represent a therapeutic option to selectively accentuate or dampen the immune response. In dedicated experimental models of allo-HSCT, including also human cells injected in immunodeficient NSG mice, we evaluated side-by-side the therapeutic effect of two IL-2Cx designed either to boost regulatory T cells (Treg) or alternatively to activate effector T cells (Teff), on GVHD occurrence and tumor relapse. We also evaluated the effect of the complexes on the phenotype and function of immune cells in vivo. Unexpectedly, both pro-Treg and pro-Teff IL-2Cx prevented GVHD development. They both induced Treg expansion and reduced CD8+ T-cell numbers, compared to untreated mice. However, only mice treated with the pro-Treg IL-2Cx, showed a dramatic reduction of exhausted CD8+ T cells, consistent with a potent anti-tumor effect. When evaluated on human cells, pro-Treg IL-2Cx also preferentially induced Treg expansion in vitro and in vivo, while allowing the development of a potent anti-tumor effect in NSG mice. Our results demonstrate the clinical relevance of using a pro-Treg, but not a pro-Teff IL2Cx to modulate alloreactivity after HSCT, while promoting a graft-versus-leukemia effect.


Asunto(s)
Enfermedad Injerto contra Huésped , Trasplante de Células Madre Hematopoyéticas , Humanos , Animales , Ratones , Linfocitos T Reguladores , Interleucina-2/uso terapéutico , Trasplante Homólogo , Enfermedad Injerto contra Huésped/etiología , Enfermedad Injerto contra Huésped/prevención & control , Enfermedad Injerto contra Huésped/tratamiento farmacológico , Trasplante de Células Madre Hematopoyéticas/métodos , Recurrencia
2.
Strahlenther Onkol ; 199(12): 1242-1254, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-36932237

RESUMEN

PURPOSE: Effects of X­ray energy levels used for myeloablative lethal total body irradiation (TBI) delivery prior to bone marrow transplantation (BMT) in preclinical mouse models were examined. MATERIALS AND METHODS: In mouse models, single-fraction myeloablative TBI at a lethal dose was delivered using two different X­ray devices, either low (160 kV cabinet irradiator) or high energy (6 MV linear accelerator), before semi-allogeneic hematopoietic stem-cell transplantation (HSCT) to ensure bone marrow (BM) chimerism, graft-versus-host disease (GVHD), and tumor engraftment. Recipient mice were clinically followed for 80 days after bone marrow transplantation (BMT). Flow cytometry was performed to assess donor chimerism and tumor engraftment in recipient mice. RESULTS: Both X­ray irradiation techniques delivered a 10 Gy single fraction of TBI, presented a lethal effect, and could allow near-complete early donor chimerism on day 13. However, low-energy irradiation increased T cells' alloreactivity compared to high-energy irradiation, leading to clinical consequences for GVHD and tumor engraftment outcomes. The alloreactive effect differences might be attributed to the distinction in inflammatory status of irradiated recipients at donor cell infusion (D0). Delaying donor cell administration (D1 after lethal TBI) attenuated T cells' alloreactivity and clinical outcomes in GVHD mouse models. CONCLUSION: Different X­ray irradiation modalities condition T cell alloreactivity in experimental semi-allogeneic BMT. Low-energy X­ray irradiator induces a post-TBI inflammatory burst and exacerbates alloreactive reactions. This technical and biological information should be considered in interpreting GVHD/ graft-versus-leukemia effect results in mice experimental models of BMT.


Asunto(s)
Enfermedad Injerto contra Huésped , Leucemia , Ratones , Animales , Médula Ósea/efectos de la radiación , Trasplante Homólogo , Rayos X , Irradiación Corporal Total , Quimerismo , Trasplante de Médula Ósea/métodos , Ratones Endogámicos C57BL
3.
J Immunother Cancer ; 10(4)2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35387779

RESUMEN

BACKGROUND: Targeting immune checkpoints that inhibit antitumor immune responses has emerged as a powerful new approach to treat cancer. We recently showed that blocking the tumor necrosis factor receptor-type 2 (TNFR2) pathway induces the complete loss of the protective function of regulatory T cells (Tregs) in a model of graft-versus-host disease (GVHD) prevention that relies on Treg-based cell therapy. Here, we tested the possibility of amplifying the antitumor response by targeting TNFR2 in a model of tumor relapse following hematopoietic stem-cell transplantation, a clinical situation for which the need for efficient therapeutic options is still unmet. METHOD: We developed appropriate experimental conditions that mimic patients that relapsed from their initial hematological malignancy after hematopoietic stem-cell transplantation. This consisted of defining in allogeneic bone marrow transplantation models developed in mice, the maximum number of required tumor cells and T cells to infuse into recipient mice to develop a model of tumor relapse without inducing GVHD. We next evaluated whether anti-TNFR2 treatment could trigger alloreactivity and consequently antitumor immune response. In parallel, we also studied the differential expression of TNFR2 on T cells including Treg from patients in post-transplant leukemia relapse and in patients developing GVHD. RESULTS: Using experimental conditions in which neither donor T cells nor TNFR2-blocking antibody per se have any effect on tumor relapse, we observed that the coadministration of a suboptimal number of T cells and an anti-TNFR2 treatment can trigger alloreactivity and subsequently induce a significant antitumor effect. This was associated with a reduced percentage of activated CD4+ and CD8+ Tregs. Importantly, human Tregs over-expressed TNFR2 relative to conventional T cells in healthy donors and in patients experiencing leukemia relapse or cortico-resistant GVHD after hematopoietic stem cell transplantation. CONCLUSIONS: These results highlight TNFR2 as a new target molecule for the development of immunotherapies to treat blood malignancy relapse, used either directly in grafted patients or to enhance donor lymphocyte infusion strategies. More widely, they open the door for new perspectives to amplify antitumor responses against solid cancers by directly targeting Tregs through their TNFR2 expression.


Asunto(s)
Enfermedad Injerto contra Huésped , Neoplasias Hematológicas , Trasplante de Células Madre Hematopoyéticas , Leucemia , Animales , Enfermedad Injerto contra Huésped/etiología , Neoplasias Hematológicas/terapia , Trasplante de Células Madre Hematopoyéticas/métodos , Humanos , Inmunidad , Leucemia/terapia , Ratones , Receptores Tipo II del Factor de Necrosis Tumoral , Recurrencia , Linfocitos T Reguladores , Trasplante Homólogo
4.
Front Cell Dev Biol ; 9: 725473, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34712661

RESUMEN

Newly discovered anti-cancer immunotherapies, such as immune checkpoint inhibitors and chimeric antigen receptor T cells, focus on spurring the anti-tumor effector T cell (Teff) response. Although such strategies have already demonstrated a sustained beneficial effect in certain malignancies, a substantial proportion of treated patients does not respond. CD4+FOXP3+ regulatory T cells (Tregs), a suppressive subset of T cells, can impair anti-tumor responses and reduce the efficacy of currently available immunotherapies. An alternative view that has emerged over the last decade proposes to tackle this immune brake by targeting the suppressive action of Tregs on the anti-tumoral response. It was recently demonstrated that the tumor necrosis factor alpha (TNF-α) tumor necrosis factor receptor 2 (TNFR2) is critical for the phenotypic stabilization and suppressive function of human and mouse Tregs. The broad non-specific effects of TNF-α infusion in patients initially led clinicians to abandon this signaling pathway as first-line therapy against neoplasms. Previously unrecognized, TNFR2 has emerged recently as a legitimate target for anti-cancer immune checkpoint therapy. Considering the accumulation of pre-clinical data on the role of TNFR2 and clinical reports of TNFR2+ Tregs and tumor cells in cancer patients, it is now clear that a TNFR2-centered approach could be a viable strategy, once again making the TNF-α pathway a promising anti-cancer target. Here, we review the role of the TNFR2 signaling pathway in tolerance and the equilibrium of T cell responses and its connections with oncogenesis. We analyze recent discoveries concerning the targeting of TNFR2 in cancer, as well as the advantages, limitations, and perspectives of such a strategy.

5.
Clin Cancer Res ; 23(15): 4416-4428, 2017 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-28213366

RESUMEN

Purpose: The efficacy of PD-1 checkpoint blockade as adjuvant therapy in localized clear cell renal cell carcinoma (ccRCC) is currently unknown. The identification of tumor microenvironment (TME) prognostic biomarkers in this setting may help define which patients could benefit from checkpoint blockade and uncover new therapeutic targets.Experimental Design: We performed multiparametric flow cytometric immunophenotypic analysis of T cells isolated from tumor tissue [tumor-infiltrating lymphocytes (TIL)], adjacent non-malignant renal tissue [renal-infiltrating lymphocytes (RIL)], and peripheral blood lymphocytes (PBL), in a cohort of patients (n = 40) with localized ccRCC. Immunophenotypic data were integrated with prognostic and histopathologic variables, T-cell receptor (TCR) repertoire analysis of sorted CD8+PD-1+ TILs, tumor mRNA expression, and digital quantitative immunohistochemistry.Results: On the basis of TIL phenotypic characterization, we identified three dominant immune profiles in localized ccRCC: (i) immune-regulated, characterized by polyclonal/poorly cytotoxic CD8+PD-1+Tim-3+Lag-3+ TILs and CD4+ICOS+ cells with a Treg phenotype (CD25+CD127-Foxp3+/Helios+GITR+), that developed in inflamed tumors with prominent infiltrations by dysfunctional dendritic cells and high PD-L1 expression; (ii) immune-activated, enriched in oligoclonal/cytotoxic CD8+PD-1+Tim-3+ TILs, that represented 22% of the tumors; and (iii) immune-silent, enriched in TILs exhibiting RIL-like phenotype, that represented 56% of patients in the cohort. Only immune-regulated tumors displayed aggressive histologic features, high risk of disease progression in the year following nephrectomy, and a CD8+PD-1+Tim-3+ and CD4+ICOS+ PBL phenotypic signature.Conclusions: In localized ccRCC, the infiltration with CD8+PD-1+Tim-3+Lag-3+ exhausted TILs and ICOS+ Treg identifies the patients with deleterious prognosis who could benefit from adjuvant therapy with TME-modulating agents and checkpoint blockade. This work also provides PBL phenotypic markers that could allow their identification. Clin Cancer Res; 23(15); 4416-28. ©2017 AACR.


Asunto(s)
Carcinoma de Células Renales/inmunología , Linfocitos Infiltrantes de Tumor/inmunología , Pronóstico , Linfocitos T/inmunología , Anciano , Linfocitos T CD4-Positivos/inmunología , Linfocitos T CD8-positivos/inmunología , Carcinoma de Células Renales/genética , Carcinoma de Células Renales/patología , Células Dendríticas/inmunología , Células Dendríticas/patología , Femenino , Regulación Neoplásica de la Expresión Génica/inmunología , Humanos , Inmunofenotipificación , Linfocitos Infiltrantes de Tumor/patología , Masculino , Persona de Mediana Edad , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/inmunología , Recurrencia Local de Neoplasia/inmunología , Recurrencia Local de Neoplasia/patología , Linfocitos T/patología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA