Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
Front Mol Biosci ; 11: 1470496, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39403185

RESUMEN

Dual inhibitors of HER2 and EGFR, such as lapatinib, have shown significant efficacy for the therapy of HER2-positive breast cancer. Previous experiments showed that in cell cultures, the efficacy of lapatinib was significantly reduced by exposure to human serum and human epidermal growth factor (EGF). At the proteomic and transcriptomic levels, we examined the changes in the HER2-positive breast cancer cell line SK-BR-3 profiles upon treatment with lapatinib, either alone or in combination with human serum or EGF. Proteomic profiling revealed 350 differentially expressed proteins (DEPs) in response to lapatinib treatment at concentrations that induced cell growth arrest. Addition of human serum or EGF in combination with lapatinib prevented cell growth inhibition, and this combination treatment returned the expression of ∼93% of DEPs to drug-free levels for both human serum and EGF. Gene ontology enrichment and OncoboxPD pathway activation level analysis showed that lapatinib addition influenced mostly common functional processes revealed in RNA- and protein-based assays. However, a specific feature was observed at the proteome level: addition of lapatinib increased the expression of proteins associated with mitochondrial function and cellular respiration. This feature was not observed when using RNA sequencing data for the same experiments. However, it is consistent with the results of the resazurin test, which showed a 1.8-fold increase in SK-BR-3 cellular respiration upon exposure to lapatinib. Thus, we conclude that enhanced cellular respiration is a novel additional mechanism of action of lapatinib on HER2-positive cancer cells.

2.
Front Genet ; 15: 1401100, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38859942

RESUMEN

The TERT gene encodes the reverse transcriptase subunit of telomerase and is normally transcriptionally suppressed in differentiated human cells but reactivated in cancers where its expression is frequently associated with poor survival prognosis. Here we experimentally assessed the RNA sequencing expression patterns associated with TERT transcription in 1039 human cancer samples of 27 tumor types. We observed a bimodal distribution of TERT expression where ∼27% of cancer samples did not express TERT and the rest showed a bell-shaped distribution. Expression of TERT strongly correlated with 1443 human genes including 103 encoding transcriptional factor proteins. Comparison of TERT- positive and negative cancers showed the differential activation of 496 genes and 1975 molecular pathways. Therein, 32/38 (84%) of DNA repair pathways were hyperactivated in TERT+ cancers which was also connected with accelerated replication, transcription, translation, and cell cycle progression. In contrast, the level of 40 positive cell cycle regulator proteins and a set of epithelial-to-mesenchymal transition pathways was specific for the TERT- group suggesting different proliferation strategies for both groups of cancer. Our pilot study showed that the TERT+ group had ∼13% of cancers with C228T or C250T mutated TERT promoter. However, the presence of promoter mutations was not associated with greater TERT expression compared with other TERT+ cancers, suggesting parallel mechanisms of its transcriptional activation in cancers. In addition, we detected a decreased expression of L1 retrotransposons in the TERT+ group, and further decreased L1 expression in promoter mutated TERT+ cancers. TERT expression was correlated with 17 genes encoding molecular targets of cancer therapeutics and may relate to differential survival patterns of TERT- positive and negative cancers.

3.
Int J Mol Sci ; 25(11)2024 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-38892189

RESUMEN

High-temperature polymer-electrolyte membrane fuel cells (HT-PEMFCs) are a very important type of fuel cells since they operate at 150-200 °C, making it possible to use hydrogen contaminated with CO. However, the need to improve the stability and other properties of gas-diffusion electrodes still impedes their distribution. Self-supporting anodes based on carbon nanofibers (CNF) are prepared using the electrospinning method from a polyacrylonitrile solution containing zirconium salt, followed by pyrolysis. After the deposition of Pt nanoparticles on the CNF surface, the composite anodes are obtained. A new self-phosphorylating polybenzimidazole of the 6F family is applied to the Pt/CNF surface to improve the triple-phase boundary, gas transport, and proton conductivity of the anode. This polymer coating ensures a continuous interface between the anode and proton-conducting membrane. The polymer is investigated using CO2 adsorption, TGA, DTA, FTIR, GPC, and gas permeability measurements. The anodes are studied using SEM, HAADF STEM, and CV. The operation of the membrane-electrode assembly in the H2/air HT-PEMFC shows that the application of the new PBI of the 6F family with good gas permeability as a coating for the CNF anodes results in an enhancement of HT-PEMFC performance, reaching 500 mW/cm2 at 1.3 A/cm2 (at 180 °C), compared with the previously studied PBI-O-PhT-P polymer.


Asunto(s)
Bencimidazoles , Electrodos , Bencimidazoles/química , Polímeros/química , Nanofibras/química , Suministros de Energía Eléctrica , Membranas Artificiales , Electrólitos/química , Resinas Acrílicas/química
4.
Membranes (Basel) ; 13(5)2023 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-37233540

RESUMEN

High-temperature polymer-electrolyte membrane fuel cells (HT-PEM FC) are a very important type of fuel cell since they operate at 150-200 °C, allowing the use of hydrogen contaminated with CO. However, the need to improve stability and other properties of gas diffusion electrodes still hinders their distribution. Anodes based on a mat (self-supporting entire non-woven nanofiber material) of carbon nanofibers (CNF) were prepared by the electrospinning method from a polyacrylonitrile solution followed by thermal stabilization and pyrolysis of the mat. To improve their proton conductivity, Zr salt was introduced into the electrospinning solution. As a result, after subsequent deposition of Pt-nanoparticles, Zr-containing composite anodes were obtained. To improve the proton conductivity of the nanofiber surface of the composite anode and reach HT-PEMFC better performance, dilute solutions of Nafion®, a polymer of intrinsic microporosity (PIM-1) and N-ethyl phosphonated polybenzimidazole (PBI-OPhT-P) were used to coat the CNF surface for the first time. These anodes were studied by electron microscopy and tested in membrane-electrode assembly for H2/air HT-PEMFC. The use of CNF anodes coated with PBI-OPhT-P has been shown to improve the HT-PEMFC performance.

5.
Cells ; 12(9)2023 05 02.
Artículo en Inglés | MEDLINE | ID: mdl-37174700

RESUMEN

The evolution of protein-coding genes has both structural and regulatory components. The first can be assessed by measuring the ratio of non-synonymous to synonymous nucleotide substitutions. The second component can be measured as the normalized proportion of transposable elements that are used as regulatory elements. For the first time, we characterized in parallel the regulatory and structural evolutionary profiles for 10,890 human genes and 2972 molecular pathways. We observed a ~0.1 correlation between the structural and regulatory metrics at the gene level, which appeared much higher (~0.4) at the pathway level. We deposited the data in the publicly available database RetroSpect. We also analyzed the evolutionary dynamics of six cancer pathways of two major axes: Notch/WNT/Hedgehog and AKT/mTOR/EGFR. The Hedgehog pathway had both components slower, whereas the Akt pathway had clearly accelerated structural evolution. In particular, the major hub nodes Akt and beta-catenin showed both components strongly decreased, whereas two major regulators of Akt TCL1 and CTMP had outstandingly high evolutionary rates. We also noticed structural conservation of serine/threonine kinases and the genes related to guanosine metabolism in cancer signaling: GPCRs, G proteins, and small regulatory GTPases (Src, Rac, Ras); however, this was compensated by the accelerated regulatory evolution.


Asunto(s)
Neoplasias , Proteínas Proto-Oncogénicas c-akt , Humanos , Proteínas Proto-Oncogénicas c-akt/metabolismo , Proteínas Hedgehog/metabolismo , Transducción de Señal/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Neoplasias/genética
6.
DNA Repair (Amst) ; 123: 103448, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36657260

RESUMEN

DNA repair mechanisms keep genome integrity and limit tumor-associated alterations and heterogeneity, but on the other hand they promote tumor survival after radiation and genotoxic chemotherapies. We screened pathway activation levels of 38 DNA repair pathways in nine human cancer types (gliomas, breast, colorectal, lung, thyroid, cervical, kidney, gastric, and pancreatic cancers). We took RNAseq profiles of the experimental 51 normal and 408 tumor samples, and from The Cancer Genome Atlas and Clinical Proteomic Tumor Analysis Consortium databases - of 500/407 normal and 5752/646 tumor samples, and also 573 normal and 984 tumor proteomic profiles from Proteomic Data Commons portal. For all the samplings we observed a congruent trend that all cancer types showed inhibition of G2/M arrest checkpoint pathway compared to the normal samples, and relatively low activities of p53-mediated pathways. In contrast, other DNA repair pathways were upregulated in most of the cancer types. The G2/M checkpoint pathway was statistically significantly downregulated compared to the other DNA repair pathways, and this inhibition was strongly impacted by antagonistic regulation of (i) promitotic genes CCNB and CDK1, and (ii) GADD45 genes promoting G2/M arrest. At the DNA level, we found that ATM, TP53, and CDKN1A genes accumulated loss of function mutations, and cyclin B complex genes - transforming mutations. These findings suggest importance of activation for most of DNA repair pathways in cancer progression, with remarkable exceptions of G2/M checkpoint and p53-related pathways which are downregulated and neutrally activated, respectively.


Asunto(s)
Neoplasias , Proteína p53 Supresora de Tumor , Humanos , Apoptosis , Proteínas de la Ataxia Telangiectasia Mutada/metabolismo , Proteínas de Ciclo Celular/metabolismo , Línea Celular Tumoral , Quinasa 1 Reguladora del Ciclo Celular (Checkpoint 1)/metabolismo , Daño del ADN , Reparación del ADN , Puntos de Control de la Fase G2 del Ciclo Celular/genética , Neoplasias/genética , Proteómica , Proteína p53 Supresora de Tumor/metabolismo
7.
Membranes (Basel) ; 12(10)2022 Sep 29.
Artículo en Inglés | MEDLINE | ID: mdl-36295715

RESUMEN

The further development of high temperature polymer electrolyte membrane (HT-PEM) fuel cells largely depends on the improvement of all components of the membrane-electrode assembly (MEA), especially membranes and electrodes. To improve the membrane characteristics, the cardo-polybenzimidazole (PBI-O-PhT)-based polymer electrolyte complex doped with phosphoric acid is reinforced using an electrospun m-PBI mat. As a result, the PBI-O-PhT/es-m-PBInet · nH3PO4 reinforced membrane is obtained with hydrogen crossover values (~0.2 mA cm-2 atm-1), one order of magnitude lower than the one of the initial PBI-O-PhT membrane (~3 mA cm-2 atm-1) during HT-PEM fuel cell operation with Celtec®P1000 electrodes at 180 °C. Just as importantly, the reinforced membrane resistance was very close to the original one (65-75 mΩ cm2 compared to ~60 mΩ cm2). A stress test that consisted of 20 start-stops, which included cooling to the room temperature and heating back to 180 °C, was applied to the MEAs with the reinforced membrane. More stable operation for the HT-PEM fuel cell was shown when the Celtec®P1000 cathode (based on carbon black) was replaced with the carbon nanofiber cathode (based on the pyrolyzed polyacrylonitrile electrospun nanofiber mat). The obtained data confirm the enhanced characteristics of the PBI-O-PhT/es-m-PBInet · nH3PO4 reinforced membrane.

8.
Membranes (Basel) ; 12(8)2022 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-36005730

RESUMEN

The manuscript deals with the fundamental problem of platinum hydrogen oxidation catalyst poisoning of the hybrid chemical power source based on bromate electroreduction and hydrogen electro-oxidation reactions. The poisoning is caused by the crossover of bromine-containing species through the proton exchange membrane separating compartments of the flow cell. Poisoning results in a drastic decrease in the flow cell performance. This paper describes the results of the direct measurement of bromine-containing species' crossover through perfluorosulfonic acid membranes of popular vendors in a hydrogen-bromate flow cell and proposes corresponding scenarios for the flow battery charge-discharge operation based on the electrolyte's control of the pH value. The rate of the crossover of the bromine-containing species through the membrane is found to be inversely proportional to the membrane thickness.

9.
ChemSusChem ; 14(20): 4583-4592, 2021 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-34411450

RESUMEN

Acid-base flow batteries (ABFB) are a promising and environmentally benign class of flow batteries that utilize neutralization energy. Among the other flow batteries, ABFBs stand out with low cost and high solubility of the electrolytes and the possibility to harvest neutralization energy of acidic and alkaline wastewaters. However, the main ABFB issues, such as low power caused by discharge current limitation and low energy density, are limiting the possibility of their implementation. In this work, a novel two-membrane ABFB with two hydrogen electrodes was developed to overcome main ABFB issues. The proposed concept demonstrated high power density up to 6.1 mW cm-2 at 13 mA cm-2 . It was shown that battery performance was greatly limited by negative electrode overvoltage. Analysis of the voltage losses allowed to estimate main power losses and highlight the possible ways to its minimization.

10.
Materials (Basel) ; 13(22)2020 Nov 23.
Artículo en Inglés | MEDLINE | ID: mdl-33238505

RESUMEN

The sulfonated polynaphthoyleneimide polymer (co-PNIS70/30) was prepared by copolymerization of 4,4'-diaminodiphenyl ether-2,2'-disulfonic acid (ODAS) and 4,4'-methylenebisanthranilic acid (MDAC) with ODAS/MDAC molar ratio 0.7/0.3. High molecular weight co-PNIS70/30 polymers were synthesized either in phenol or in DMSO by catalytic polyheterocyclization in the presence of benzoic acid and triethylamine. The titration reveals the ion-exchange capacity of the polymer equal to 2.13 meq/g. The membrane films were prepared by casting polymer solution. Conductivities of the polymer films were determined using both in- and through-plane geometries and reached ~96 and ~60 mS/cm, respectively. The anisotropy of the conductivity is ascribed to high hydration of the surface layer compared to the bulk. SFG NMR diffusometry shows that, in the temperature range from 213 to 353 K, the 1H self-diffusion coefficient of the co-PNIS70/30 membrane is about one third of the diffusion coefficient of Nafion® at the same humidity. However, temperature dependences of proton conductivities of Nafion® and of co-PNIS70/30 membranes are nearly identical. Membrane-electrode assemblies (MEAs) based on co-PNIS70/30 were fabricated by different procedures. The optimal MEAs with co-PNIS70/30 membranes are characterized by maximum output power of ~370 mW/cm2 at 80 °C. It allows considering sulfonated co-PNIS70/30 polynaphthoyleneimides membrane attractive for practical applications.

11.
Polymers (Basel) ; 12(6)2020 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-32545725

RESUMEN

Electrospinning of polyacrylonitrile/DMF dopes containing salts of nickel, cobalt, zirconium, cerium, gadolinium, and samarium, makes it possible to obtain precursor nanofiber mats which can be subsequently converted into carbon nanofiber (CNF) composites by pyrolysis at 1000-1200 °C. Inorganic additives were found to be uniformly distributed in CNFs. Metal states were investigated by transmission electron microscopy and X-ray photoelectron spectroscopy (XPS). According to XPS in CNF/Zr/Ni/Gd composites pyrolyzed at 1000 °C, nickel exists as Ni0 and as Ni2+, gadolinium as Gd3+, and zirconium as Zr4+. If CNF/Zr/Ni/Gd is pyrolyzed at 1200 °C, nickel exists only as Ni0. For CNF/Sm/Co composite, samarium is in Sm3+ form when cobalt is not found on a surface. For CNF/Zr/Ni/Ce composite, cerium exists both as Ce4+ and as Ce3+. Composite CNF mats were platinized and tested as cathodes in high-temperature polymer electrolyte membrane fuel cell (HT-PEMFC). Such approach allows to introduce Pt-M and Pt-MOx into CNF, which are more durable compared to carbon black under HT-PEMFC operation. For CNF/Zr/Ni/Gd composite cathode, higher performance in the HT-PEMFC at I >1.2 A cm-2 is achieved due to elimination of mass transfer losses in gas-diffusion electrode compared to commercial Celtec®P1000.

12.
RSC Adv ; 9(47): 27406-27418, 2019 Aug 29.
Artículo en Inglés | MEDLINE | ID: mdl-35529212

RESUMEN

Crystalline platinum nanoparticles supported on carbon nanofibers were synthesized for use as an electrocatalyst for polymer electrolyte membrane fuel cells. The nanofibers were prepared by a method of electrospinning from polymer solution with subsequent pyrolysis. Pt nanoneedles supported on polyacrylonitrile pyrolyzed electrospun nanofibers were synthesized by chemical reduction of H2[PtCl6] in aqueous solution. The synthesized electrocatalysts were investigated using scanning, high resolution transmission and scanning transmission electron microscopies, EDX analysis and electron diffraction. The shape and the size of the electrocatalyst crystal Pt nanoparticles were controled and found to depend on the method of H2[PtCl6] reduction type and on conditions of subsequent thermal treatment. Soft Pt reduction by formic acid followed by 100 °C thermal treatment produced needle-shape Pt nanoparticles with a needle length up to 25 nm and diameter up to 5 nm. Thermal treatment of these nanoparticles at 500 °C resulted in partial sintering of the Pt needles. When formic acid was added after 24 h from the beginning of platinization, Pt reduction resulted in small-size spherical Pt nanoparticle of less than 10 nm in diameter. Reduction of H2[PtCl6], preadsorbed on electrospun nanofibers in formic acid with further treatment in H2 flow at 500 °C, resulted in intensive sintering of platinum particles, with formation of conglomerates of 50 nm in size, however, individual particles still retain a size of less than 10 nm. Electrochemically active surface area (ECSA) of Pt/C catalyst was measured by electrochemical hydrogen adsorption/desorption measurements in 0.5 M H2SO4. ECSA of needle-shape Pt nanoparticles was 25 m2 g-1. It increased up to 31 m2 g-1 after thermal treatment at 500 °C, likely, due to amorphous structures removal from carbon nanofibers and retaining of Pt nanoneedle morphology. ECSA of small-size spherical Pt nanoparticles was 26 m2 g-1. Further thermal treatment at 500 °C in vacuum decreased ECSA down to 20 m2 g-1 due to Pt sintering and Pt active sites deactivation. The thermal treatment of small-size spherical Pt nanoparticles in H2 flow at 500 °C produced agglomerates of Pt nanoparticles with ECSA of 14 m2 g-1.

13.
ACS Appl Mater Interfaces ; 7(34): 19500-8, 2015 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-26271017

RESUMEN

We report a new efficient method for fabricating a superhydrophobic oxidized surface of aluminum alloys with enhanced resistance to pitting corrosion in sodium chloride solutions. The developed coatings are considered very prospective materials for the automotive industry, shipbuilding, aviation, construction, and medicine. The method is based on nanosecond laser treatment of the surface followed by chemisorption of a hydrophobic agent to achieve the superhydrophobic state of the alloy surface. We have shown that the surface texturing used to fabricate multimodal roughness of the surface may be simultaneously used for modifying the physicochemical properties of the thick surface layer of the substrate itself. Electrochemical and wetting experiments demonstrated that the superhydrophobic state of the metal surface inhibits corrosion processes in chloride solutions for a few days. However, during long-term contact of a superhydrophobic coating with a solution, the wetted area of the coating is subjected to corrosion processes due to the formation of defects. In contrast, the combination of an oxide layer with good barrier properties and the superhydrophobic state of the coating provides remarkable corrosion resistance. The mechanisms for enhancing corrosion protective properties are discussed.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA