Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Base de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Poult Sci ; 98(11): 5551-5561, 2019 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-31198963

RESUMEN

Aflatoxins are carcinogenic secondary metabolites frequently detected in food and feed stuff based on maize and other crops susceptible to infection with the fungal pathogen Aspergillus flavus. We investigated the metabolization of aflatoxins in chickens by analyzing excreta and ileal content and developed and validated a biomarker method for detection of aflatoxins and their metabolites in these matrices. Analysis of ileal content served to distinguish between urinary and fecal excretion combined in the excreta samples. During a 3-wk animal trial, one hundred sixty-eight 1-day-old chicks were randomly allocated to 24 pens with 7 chicks per pen and subjected to different feed regimens with: A) toxin-free feed, B) feed supplemented with 18 ng of total aflatoxins/g, and C) feed supplemented with 515 ng of total aflatoxins/g. Chicken excreta and ileal content were sampled after 7, 14, and 21 D. An analytical method based on liquid chromatography coupled to tandem mass spectrometry was validated for the determination of aflatoxin B1, B2, G1, G2, M1, P1, Q1, and aflatoxin B1-N7-guanine (AFB1-N7-Gua) in chicken's samples. Comparing chicken excreta, which contain urine and feces, to ileal content, which contains no urine, we explored the secretion pathway of aflatoxin metabolites. The AFB1-N7-Gua was only detected in excreta, whereas aflatoxin M1 (AFM1) was detected both in ileal content and excreta. Aflatoxin M1 was detected in excreta in concentrations 5 times higher than in ileal content, suggesting primary excretion via urine. Although chickens are relatively resistant to aflatoxins, contamination of feed can lead to adverse effects and thus economic losses in farming. Therefore, a biomarker method to estimate the exposure of chickens to aflatoxins can play an important role to monitor the animals' health.


Asunto(s)
Aflatoxinas/aislamiento & purificación , Alimentación Animal/análisis , Crianza de Animales Domésticos/métodos , Pollos , Heces/química , Análisis de los Alimentos/métodos , Contenido Digestivo/química , Animales , Biomarcadores/análisis , Cromatografía Liquida/métodos , Cromatografía Liquida/veterinaria , Contaminación de Alimentos , Espectrometría de Masas en Tándem/métodos , Espectrometría de Masas en Tándem/veterinaria
2.
Poult Sci ; 96(12): 4342-4351, 2017 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-29053869

RESUMEN

Fumonisins (FB) are among the most frequently detected mycotoxins in feedstuffs and finished feed, and recent data suggest that the functions of the gastrointestinal tract (GIT) in poultry species might be compromised at doses ranging from 10 to 20 mg/kg, close to field incidences and below the US and EU guidelines. Strategies are therefore necessary to reduce the exposure of poultry to FB. In the present study, we assessed the efficacy of fumonisin esterase FumD (EC 3.1.1.87, commercial name FUMzyme®) to cleave the tricarballylic acid side chains of FB, leading to the formation of non-toxic hydrolyzed fumonisins in the GIT of broiler chickens. Broiler chickens were fed for 14 d (7 to 21 d of age) 3 different diets (6 birds/cage, 6 cages/diet), i) control feed (negative control group), ii) feed contaminated with 10 mg FB/kg (FB group), and iii) feed contaminated with 10 mg FB/kg and supplemented with 100 units of FUMzyme®/kg (FB+FUMzyme® group). To determine the degree of reduction of FB in the GIT, 2 characteristics were analyzed. First, the sphinganine-to-sphingosine ratio in the serum and liver was determined as a biomarker of effect for exposure to FB. Second, the concentration of fumonisin B1 and its hydrolyzed forms was evaluated in the gizzard, the proximal and distal parts of the small intestine, and the excreta. Significantly reduced sphinganine-to-sphingosine ratios in the serum and liver of the FB+FUMzyme® group (serum: 0.15 ± 0.01; liver: 0.17 ± 0.01) compared to the FB group (serum: 0.20 ± 0.01; liver: 0.29 ± 0.03) proved that supplementation of broiler feed with FUMzyme® was effective in partially counteracting the toxic effect of dietary FB. Likewise, FB concentrations in digesta and excreta were significantly reduced in the FB+FUMzyme® group compared to the FB group (P < 0.05; up to 75%). FUMzyme® furthermore partially counteracted FB-induced up-regulation of cytokine gene expression (IL-8 and IL-10) in the jejunum. The FB group showed significantly higher gene expression of IL-8 and IL-10 compared to the negative control group (IL-8: fold change = 2.9 ± 1.1, P < 0.05; IL-10: fold change = 3.6 ± 1.4, P < 0.05), whereas IL-8 and IL-10 mRNA levels were not significantly different in the FB+FUMzyme®® group compared to the other 2 groups. In conclusion, FUMzyme® is suitable to detoxify FB in chickens and maintain gut functions.


Asunto(s)
Alimentación Animal/análisis , Pollos/fisiología , Fumonisinas/química , Tracto Gastrointestinal/efectos de los fármacos , Expresión Génica/efectos de los fármacos , Hígado/efectos de los fármacos , Animales , Proteínas Aviares/genética , Proteínas Aviares/metabolismo , Biomarcadores/análisis , Pollos/genética , Pollos/crecimiento & desarrollo , Citocinas/genética , Citocinas/metabolismo , Dieta/veterinaria , Heces/química , Tracto Gastrointestinal/química , Hidrólisis , Hígado/química , Masculino , Distribución Aleatoria , Esfingosina/análogos & derivados , Esfingosina/sangre , Esfingosina/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA