Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Base de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
ACS Appl Bio Mater ; 7(6): 4175-4192, 2024 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-38830774

RESUMEN

Nerve growth factor (NGF) plays a crucial role in cellular growth and neurodifferentiation. To achieve significant neuronal regeneration and repair using in vitro NGF delivery, spatiotemporal control that follows the natural neuronal processes must be developed. Notably, a challenge hindering this is the uncontrolled burst release from the growth factor delivery systems. The rapid depletion of NGF reduces treatment efficacy, leading to poor cellular response. To address this, we developed a highly controllable system using graphene oxygen (GO) and GelMA hydrogels modulated by electrical stimulation. Our system showed superior control over the release kinetics, reducing the burst up 30-fold. We demonstrate that the system is also able to sequester and retain NGF up to 10-times more efficiently than GelMA hydrogels alone. Our controlled release system enabled neurodifferentiation, as revealed by gene expression and immunostaining analysis. The increased retention and reduced burst release from our system show a promising pathway for nerve tissue engineering research toward effective regeneration.


Asunto(s)
Materiales Biocompatibles , Estimulación Eléctrica , Grafito , Hidrogeles , Factor de Crecimiento Nervioso , Regeneración Nerviosa , Hidrogeles/química , Hidrogeles/farmacología , Grafito/química , Grafito/farmacología , Regeneración Nerviosa/efectos de los fármacos , Factor de Crecimiento Nervioso/farmacología , Factor de Crecimiento Nervioso/metabolismo , Factor de Crecimiento Nervioso/química , Materiales Biocompatibles/química , Materiales Biocompatibles/farmacología , Animales , Tamaño de la Partícula , Ensayo de Materiales , Ratas , Células PC12 , Ingeniería de Tejidos
2.
ACS Biomater Sci Eng ; 7(6): 2279-2295, 2021 06 14.
Artículo en Inglés | MEDLINE | ID: mdl-33956434

RESUMEN

The human tissues most sensitive to electrical activity such as neural and muscle tissues are relatively soft, and yet traditional conductive materials used to interface with them are typically stiffer by many orders of magnitude. Overcoming this mismatch, by creating both very soft and electroactive materials, is a major challenge in bioelectronics and biomaterials science. One strategy is to imbue soft materials, such as hydrogels, with electroactive properties by adding small amounts of highly conductive nanomaterials. However, electroactive hydrogels reported to date have required relatively large volume fractions (>1%) of added nanomaterial, have shown only modest electroactivity, and have not been processable via additive manufacturing to create 3D architectures. Here, we describe the development and characterization of improved biocompatible photo-cross-linkable soft hybrid electroactive hydrogels based on gelatin methacryloyol (GelMA) and large area graphene oxide (GO) flakes, which resolve each of these three limitations. The addition of very small amounts (less than a 0.07% volume fraction) of GO to a 5% w/v GelMA hydrogel resulted in a dramatic (∼35-fold) decrease in the impedance at 1 Hz compared with GelMA alone. The GelMA/GO coated indium tin oxide (ITO) electrode also showed a considerable reduction in the impedance at 1 kHz (down to 170 Ω compared with 340 Ω for the GelMA-coated ITO), while charge injection capacity increased more than 6-fold. We attribute this enhanced electroactivity to the increased electroactive surface area contributed by the GO. Despite this dramatic change in electroactivity, the GelMA/GO composite hydrogels' mechanical properties were only moderately affected. Mechanical properties increased by ∼2-fold, and therefore, the hydrogels' desired softness of <4 kPa was retained. Also, we demonstrate how light attenuation through the gel can be used to create a stiffness gradient with the exposed surface of the gel having an elastic modulus of <1.5 kPa. GO addition also enhanced the rheological properties of the GelMA composites, thus facilitating 3D extrusion printing. GelMA/GO enhanced filament formation as well as improved printability and the shape fidelity/integrity of 3D printed structures compared with GelMA alone. Additionally, the GelMA/GO 3D printed structures presented a higher electroactive behavior than nonprinted samples containing the same GelMA/GO amount, which can be attributed to the higher electroactive surface area of 3D printed structures. These findings provide new rational choices of electroactive hydrogel (EAH) compositions with broad potential applications in bioelectronics, tissue engineering, and drug delivery.


Asunto(s)
Gelatina , Grafito , Humanos , Hidrogeles , Ingeniería de Tejidos
3.
Chem Commun (Camb) ; 52(48): 7528-40, 2016 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-27182032

RESUMEN

Gold coated magnetic nanoparticles (Au@MNPs) have become increasingly interesting to nanomaterial scientists due to their multifunctional properties and their potential in both analytical chemistry and nanomedicine. The past decade has seen significant progress in the synthesis and surface modification of Au@MNPs. This progress is based on advances in the preparation and characterization of iron/iron oxide nanocrystals with the required surface functional groups. In this critical review, we summarize recent developments in the methods of preparing Au@MNPs, surface functionalization and their application in analytical sensing and biomedicine. We highlight some of the remaining major challenges, as well as the lessons learnt when working with Au@MNPs.


Asunto(s)
Investigación Biomédica , Materiales Biocompatibles Revestidos/química , Oro/química , Nanopartículas de Magnetita/química , Propiedades de Superficie
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA