Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Base de datos
Tipo del documento
Asunto de la revista
Intervalo de año de publicación
1.
PLoS One ; 19(4): e0300915, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38687731

RESUMEN

Mosquitoes harbor a large diversity of eukaryotic viruses. Those viromes probably influence mosquito physiology and the transmission of human pathogens. Nevertheless, their ecology remains largely unstudied. Here, we address two key questions in virome ecology. First, we assessed the influence of mosquito species on virome taxonomic diversity and relative abundance. Contrary to most previous studies, the potential effect of the habitat was explicitly included. Thousands of individuals of Culex poicilipes and Culex tritaeniorhynchus, two vectors of viral diseases, were concomitantly sampled in three habitats over two years. A total of 95 viral taxa from 25 families were identified with meta-transcriptomics, with 75% of taxa shared by both mosquitoes. Viromes significantly differed by mosquito species but not by habitat. Differences were largely due to changes in relative abundance of shared taxa. Then, we studied the diversity of viruses with a broad host range. We searched for viral taxa shared by the two Culex species and Aedes vexans, another disease vector, present in one of the habitats. Twenty-six out of the 163 viral taxa were found in the three mosquitoes. These taxa encompassed 14 families. A database analysis supported broad host ranges for many of those viruses, as well as a widespread geographical distribution. Thus, the viromes of mosquitoes from the same genera mainly differed in the relative abundance of shared taxa, whereas differences in viral diversity dominated between mosquito genera. Whether this new model of virome diversity and structure applies to other mosquito communities remains to be determined.


Asunto(s)
Culex , Especificidad del Huésped , Mosquitos Vectores , Viroma , Animales , Viroma/genética , Culex/virología , Mosquitos Vectores/virología , Aedes/virología , Culicidae/virología , Ecosistema , Simpatría , Virus/clasificación , Virus/genética , Virus/aislamiento & purificación
2.
Virus Evol ; 10(1): vead088, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38516656

RESUMEN

Large-scale metagenomic and -transcriptomic studies have revolutionized our understanding of viral diversity and abundance. In contrast, endogenous viral elements (EVEs), remnants of viral sequences integrated into host genomes, have received limited attention in the context of virus discovery, especially in RNA-Seq data. EVEs resemble their original viruses, a challenge that makes distinguishing between active infections and integrated remnants difficult, affecting virus classification and biases downstream analyses. Here, we systematically assess the effects of EVEs on a prototypical virus discovery pipeline, evaluate their impact on data integrity and classification accuracy, and provide some recommendations for better practices. We examined EVEs and exogenous viral sequences linked to Orthomyxoviridae, a diverse family of negative-sense segmented RNA viruses, in 13 genomic and 538 transcriptomic datasets of Culicinae mosquitoes. Our analysis revealed a substantial number of viral sequences in transcriptomic datasets. However, a significant portion appeared not to be exogenous viruses but transcripts derived from EVEs. Distinguishing between transcribed EVEs and exogenous virus sequences was especially difficult in samples with low viral abundance. For example, three transcribed EVEs showed full-length segments, devoid of frameshift and nonsense mutations, exhibiting sufficient mean read depths that qualify them as exogenous virus hits. Mapping reads on a host genome containing EVEs before assembly somewhat alleviated the EVE burden, but it led to a drastic reduction of viral hits and reduced quality of assemblies, especially in regions of the viral genome relatively similar to EVEs. Our study highlights that our knowledge of the genetic diversity of viruses can be altered by the underestimated presence of EVEs in transcriptomic datasets, leading to false positives and altered or missing sequence information. Thus, recognizing and addressing the influence of EVEs in virus discovery pipelines will be key in enhancing our ability to capture the full spectrum of viral diversity.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA