Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Base de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Cardiovasc Diabetol ; 15(1): 120, 2016 08 26.
Artículo en Inglés | MEDLINE | ID: mdl-27561966

RESUMEN

BACKGROUND: The metabolic syndrome is becoming increasingly prevalent in the general population that is at simultaneous risk for both type 2 diabetes and cardiovascular disease. The critical pathogenic mechanisms underlying these diseases are obesity-driven insulin resistance and atherosclerosis, respectively. To obtain a better understanding of molecular mechanisms involved in pathogenesis of the metabolic syndrome as a basis for future treatment strategies, studies considering both inherent risks, namely metabolic and cardiovascular, are needed. Hence, the aim of this study was to identify pathways commonly dysregulated in obese adipose tissue and atherosclerotic plaques. METHODS: We carried out a gene set enrichment analysis utilizing data from two microarray experiments with obese white adipose tissue and atherosclerotic aortae as well as respective controls using a combined insulin resistance-atherosclerosis mouse model. RESULTS: We identified 22 dysregulated pathways common to both tissues with p values below 0.05, and selected inflammatory response and oxidative phosphorylation pathways from the Hallmark gene set to conduct a deeper evaluation at the single gene level. This analysis provided evidence of a vast overlap in gene expression alterations in obese adipose tissue and atherosclerosis with Il7r, C3ar1, Tlr1, Rgs1 and Semad4d being the highest ranked genes for the inflammatory response pathway and Maob, Bckdha, Aldh6a1, Echs1 and Cox8a for the oxidative phosphorylation pathway. CONCLUSIONS: In conclusion, this study provides extensive evidence for common pathogenic pathways underlying obesity-driven insulin resistance and atherogenesis which could provide a basis for the development of novel strategies to simultaneously prevent type 2 diabetes and cardiovascular disease in patients with metabolic syndrome.


Asunto(s)
Tejido Adiposo Blanco/metabolismo , Aorta/metabolismo , Enfermedades de la Aorta/genética , Aterosclerosis/genética , Redes Reguladoras de Genes , Obesidad/genética , Transducción de Señal/genética , Tejido Adiposo Blanco/fisiopatología , Adiposidad/genética , Animales , Aorta/patología , Enfermedades de la Aorta/patología , Aterosclerosis/patología , Biología Computacional , Bases de Datos Genéticas , Dieta Alta en Grasa , Modelos Animales de Enfermedad , Perfilación de la Expresión Génica/métodos , Regulación de la Expresión Génica , Marcadores Genéticos , Predisposición Genética a la Enfermedad , Masculino , Ratones , Obesidad/fisiopatología , Análisis de Secuencia por Matrices de Oligonucleótidos , Fenotipo , Placa Aterosclerótica , Factores de Tiempo
2.
Mol Med ; 22: 487-496, 2016 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-27385318

RESUMEN

Obesity is strongly associated with metabolic syndrome, a combination of risk factors that predispose to the development of the cardiometabolic diseases: atherosclerotic cardiovascular disease and type 2 diabetes mellitus. Prevention of metabolic syndrome requires novel interventions to address this health challenge. The objective of this study was the identification of candidate molecules for the prevention and treatment of insulin resistance and atherosclerosis, conditions that underlie type 2 diabetes mellitus and cardiovascular disease, respectively. We used an unbiased bioinformatics approach to identify molecules that are upregulated in both conditions by combining murine and human data from a microarray experiment and meta-analyses. We obtained a pool of eight genes that were upregulated in all the databases analysed. This included well known and novel molecules involved in the pathophysiology of type 2 diabetes mellitus and cardiovascular disease. Notably, matrix metalloproteinase 12 (MMP12) was highly ranked in all analyses and was therefore chosen for further investigation. Analyses of visceral and subcutaneous white adipose tissue from obese compared to lean mice and humans convincingly confirmed the up-regulation of MMP12 in obesity at mRNA, protein and activity levels. In conclusion, using this unbiased approach an interesting pool of candidate molecules was identified, all of which have potential as targets in the treatment and prevention of cardiometabolic diseases.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA