Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Base de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Blood Cell Ther ; 7(2): 37-40, 2024 May 25.
Artículo en Inglés | MEDLINE | ID: mdl-38854403

RESUMEN

Secondary central nervous system (CNS) lymphomas typically require CNS-penetrating drugs; however, the available agents are limited with temporary effects and poor outcomes. Chimeric antigen receptor T (CAR-T) cell therapy (lisocabtagene maraleucel; liso-cel) has been used to treat a few cases of isolated secondary CNS lymphoma. Herein, we report the case of a 66-year-old male diagnosed with diffuse large B-cell lymphoma (Ann Arbor grade IV; R-IPI, good risk; CNS IPI: Intermediate risk) who achieved complete remission (CR) after six courses of R-CHOP therapy. Three months later, he presented with ptosis and eye movement disorder. Systemic CT and bone marrow examination revealed no lymphoma. Although cranial-enhanced MRI showed normal findings, an increased number of B-cells (51/µL) with the original lymphoma phenotype (CD19+CD79a+CD5-CD10-CD20-Igλ+) was detected in cerebrospinal fluid (CSF), indicating an isolated CNS relapse. Seven high-dose methotrexate courses led to partial response. Subsequently, the patient received CAR-T cell therapy with tolerable adverse events - cytokine release syndrome treated with tocilizumab, no immune effector cell-associated neurotoxicity syndrome, and bone marrow failure treated with granulocyte-colony stimulating factor and eltrombopag. Sequential flow cytometry revealed a high peak of CAR-T cells and the presence of residual CAR-T cells in the peripheral blood, indicating immune surveillance of CNS lymphoma by CAR-T cells. This treatment led to a second CR. This case is the first to validate the efficacy and safety of CAR-T cell therapy for isolated secondary CNS lymphoma in clinical practice. Future accumulation of evidence on the efficacy and safety of CAR-T cell therapy is essential.

2.
Peptides ; 32(2): 246-52, 2011 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-21055430

RESUMEN

Orexin (ORX) plays a critical role in reward-seeking behavior for natural rewards and drugs of abuse. The mesolimbic dopamine (DA) pathway that projects into the nucleus accumbens (NAc) from the ventral tegmental area is deeply involved in the neural mechanisms underlying reward, drug abuse and motivation. A recent study demonstrated that ORX-immunopositive fibers densely project into the shell of the NAc (NAcSh), suggesting that the NAcSh might be a site of the interaction between the ORXergic and DAergic systems for reward-seeking behavior. Therefore, the electrophysiological effects of ORX-B and DA on NAcSh neurons were examined extracellularly in rat brain slice preparations. ORX-B excited approximately 78% of neurons tested and inhibited 4%, whereas DA excited 50% and inhibited 22% of NAcSh neurons. These excitations and inhibitions persisted during synaptic blockade in a low-Ca(2+)/high-Mg(2+) solution. DA-induced excitation was attenuated by SCH23390 or sulpiride, whereas DA-induced inhibition was suppressed by sulpiride. Of the neurons that were excited by ORX-B, 71% and 18% were excited and inhibited by DA, respectively. In 63% of neurons that were excited by ORX-B, the simultaneous application of ORX-B and DA increased the firing rate to two times greater than ORX-B alone, whereas, the simultaneous application significantly decreased the neuronal firing rate by 73% in the remaining 37% compared to ORX-B. These results suggest that an interaction between the ORXergic and DAergic systems occurs in the NAcSh and that the NAcSh is involved in the neural mechanisms in which ORX participates in the regulation of reward-seeking behavior.


Asunto(s)
Potenciales de Acción/fisiología , Dopamina/farmacología , Péptidos y Proteínas de Señalización Intracelular/farmacología , Neuronas/fisiología , Neuropéptidos/farmacología , Núcleo Accumbens/citología , Potenciales de Acción/efectos de los fármacos , Animales , Benzazepinas/farmacología , Antagonistas de los Receptores de Dopamina D2 , Interacciones Farmacológicas/fisiología , Técnicas In Vitro , Magnesio/farmacología , Masculino , Neuronas/efectos de los fármacos , Núcleo Accumbens/efectos de los fármacos , Núcleo Accumbens/fisiología , Orexinas , Ratas , Ratas Wistar , Receptores de Dopamina D1/antagonistas & inhibidores , Sulpirida/farmacología , Transmisión Sináptica/efectos de los fármacos
3.
Peptides ; 31(6): 1139-45, 2010 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-20338206

RESUMEN

Growth hormone (GH) secretion from the pituitary gland is partly regulated by GH releasing hormone (GHRH)-containing neurons located in the hypothalamic arcuate nucleus (ARC). GHRH-containing neurons express the GH secretagogue (GHS) receptor (GHS-R) and the somatostatin (SRIF) receptor. Recently, an endogenous ligand for the GHS-R named ghrelin was found. Therefore, it seems that both ghrelin and SRIF are involved in the hypothalamic regulation of GH release via GHRH-containing neurons in the ARC. In extracellular single unit recordings from in vitro hypothalamic slice preparations from rats, application of 100 nM ghrelin substantially excited ARC neurons (82.5%), whereas 1 microM SRIF substantially inhibited them (81.8%). The ghrelin-induced excitatory and SRIF-induced inhibitory effects on ARC neurons were dose-dependent and persisted during synaptic blockade using low-Ca(2+)/high-Mg(2+) solution. In addition, the effects were antagonized by [D-Lys(3)]-GHRP-6, a GHS-R antagonist, and CYN154806, a SRIF receptor subtype sst2 antagonist, respectively. When ghrelin and SRIF were sequentially applied to ARC neurons, 95.2% were excited by ghrelin and inhibited by SRIF. Similarly, 85.0% of ARC neuroendocrine cells that project to the median eminence were excited by ghrelin and inhibited by SRIF. These results indicate that ARC neuroendocrine cells projecting to the median eminence are dose-dependently, postsynaptically and oppositely regulated by ghrelin through GHS-R and SRIF via the SRIF sst2 receptor subtype. Our results also suggest that most of these ARC neuroendocrine cells are presumably GHRH-containing neurons and are involved in the cellular processes through which ghrelin and SRIF participate in the hypothalamic regulation of GH release.


Asunto(s)
Núcleo Arqueado del Hipotálamo/metabolismo , Ghrelina/farmacología , Neuronas/efectos de los fármacos , Somatostatina/farmacología , Animales , Núcleo Arqueado del Hipotálamo/efectos de los fármacos , Células Cultivadas , Hipotálamo/metabolismo , Masculino , Neuronas/fisiología , Oligopéptidos/farmacología , Ratas , Ratas Wistar , Receptores de Somatostatina/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA