Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Base de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Heliyon ; 6(3): e03519, 2020 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-32181392

RESUMEN

MAPK phosphatases (MKP) downregulate the activity of mitogen-activated protein kinases (MAPK), such as ERK1/2, and modulate the processes regulated by these kinases. ERK1/2 participate in a wide range of processes including tissue-specific hormone-stimulated steroidogenesis. H295R cells are a suitable model for the study of human adrenal cortex functions, particularly steroid synthesis, and respond to angiotensin II (Ang II) triggering ERK1/2 phosphorylation in a transient fashion. MKP-3 dephosphorylates ERK1/2 and, as recently reported, forkhead box protein 1 (FOXO1). Here, we analyzed MKP-3 expression in H295R cells and its putative regulation by Ang II. Results showed the expression of MKP-3 full length (L) and a short splice variant (S), and the upregulation of both isoforms by Ang II. L and S messenger and protein levels increased 30 min after Ang II stimulation and declined over the next 3 h, a temporal frame compatible with ERK1/2 dephosphorylation. In addition, FOXO1 activation is known to include its dephosphorylation and nuclear translocation. Therefore, we analyzed the effect of Ang II on FOXO1 modulation. Ang II induced FOXO1 transient phosphorylation and translocation and also the induction of p21, a FOXO1-dependent gene, whereas MKP-3 knock-down reduced both FOXO1 translocation and p21 induction. These data suggest that, through MKP-3, Ang II counteracts its own effects on ERK1/2 activity and also triggers the activation of FOXO-1 and the induction of cell cycle inhibitor p21. Taken together, the current findings reveal the participation of MKP-3 not only in turn-off but also in turn-on signals which control important cellular processes.

2.
Artículo en Inglés | MEDLINE | ID: mdl-27375556

RESUMEN

In adrenocortical cells, adrenocorticotropin (ACTH) promotes the activation of several protein kinases. The action of these kinases is linked to steroid production, mainly through steroidogenic acute regulatory protein (StAR), whose expression and activity are dependent on protein phosphorylation events at genomic and non-genomic levels. Hormone-dependent mitochondrial dynamics and cell proliferation are functions also associated with protein kinases. On the other hand, protein tyrosine dephosphorylation is an additional component of the ACTH signaling pathway, which involves the "classical" protein tyrosine phosphatases (PTPs), such as Src homology domain (SH) 2-containing PTP (SHP2c), and members of the MAP kinase phosphatase (MKP) family, such as MKP-1. PTPs are rapidly activated by posttranslational mechanisms and participate in hormone-stimulated steroid production. In this process, the SHP2 tyrosine phosphatase plays a crucial role in a mechanism that includes an acyl-CoA synthetase-4 (Acsl4), arachidonic acid (AA) release and StAR induction. In contrast, MKPs in steroidogenic cells have a role in the turn-off of the hormonal signal in ERK-dependent processes such as steroid synthesis and, perhaps, cell proliferation. This review analyzes the participation of these tyrosine phosphates in the ACTH signaling pathway and the action of kinases and phosphatases in the regulation of mitochondrial dynamics and steroid production. In addition, the participation of kinases and phosphatases in the signal cascade triggered by different stimuli in other steroidogenic tissues is also compared to adrenocortical cell/ACTH and discussed.

3.
J Cell Biochem ; 117(9): 2170-81, 2016 09.
Artículo en Inglés | MEDLINE | ID: mdl-27061092

RESUMEN

Adrenocorticotropic hormone (ACTH) treatment has been proven to promote paxillin dephosphorylation and increase soluble protein tyrosine phosphatase (PTP) activity in rat adrenal zona fasciculata (ZF). Also, in-gel PTP assays have shown the activation of a 115-kDa PTP (PTP115) by ACTH. In this context, the current work presents evidence that PTP115 is PTP-PEST, a PTP that recognizes paxillin as substrate. PTP115 was partially purified from rat adrenal ZF and PTP-PEST was detected through Western blot in bioactive samples taken in each purification step. Immunohistochemical and RT-PCR studies revealed PTP-PEST expression in rat ZF and Y1 adrenocortical cells. Moreover, a PTP-PEST siRNA decreased the expression of this phosphatase. PKA phosphorylation of purified PTP115 isolated from non-ACTH-treated rats increased KM and VM . Finally, in-gel PTP assays of immunoprecipitated paxillin from control and ACTH-treated rats suggested a hormone-mediated increase in paxillin-PTP115 interaction, while PTP-PEST and paxillin co-localize in Y1 cells. Taken together, these data demonstrate PTP-PEST expression in adrenal ZF and its regulation by ACTH/PKA and also suggest an ACTH-induced PTP-PEST-paxillin interaction. J. Cell. Biochem. 117: 2170-2181, 2016. © 2016 The Authors. Journal of Cellular Biochemistry Published by Wiley Periodicals, Inc.


Asunto(s)
Hormona Adrenocorticotrópica/farmacología , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Regulación Enzimológica de la Expresión Génica/efectos de los fármacos , Paxillin/metabolismo , Proteína Tirosina Fosfatasa no Receptora Tipo 12/biosíntesis , Zona Fascicular/metabolismo , Animales , Línea Celular Tumoral , Proteínas Quinasas Dependientes de AMP Cíclico/genética , Ratones , Paxillin/genética , Unión Proteica/efectos de los fármacos , Proteína Tirosina Fosfatasa no Receptora Tipo 12/genética , Ratas , Zona Fascicular/citología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA