Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 49
Filtrar
Más filtros

Base de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
2.
Elife ; 122023 Dec 27.
Artículo en Inglés | MEDLINE | ID: mdl-38149844

RESUMEN

Insulin resistance (IR) is a complex metabolic disorder that underlies several human diseases, including type 2 diabetes and cardiovascular disease. Despite extensive research, the precise mechanisms underlying IR development remain poorly understood. Previously we showed that deficiency of coenzyme Q (CoQ) is necessary and sufficient for IR in adipocytes and skeletal muscle (Fazakerley et al., 2018). Here, we provide new insights into the mechanistic connections between cellular alterations associated with IR, including increased ceramides, CoQ deficiency, mitochondrial dysfunction, and oxidative stress. We demonstrate that elevated levels of ceramide in the mitochondria of skeletal muscle cells result in CoQ depletion and loss of mitochondrial respiratory chain components, leading to mitochondrial dysfunction and IR. Further, decreasing mitochondrial ceramide levels in vitro and in animal models (mice, C57BL/6J) (under chow and high-fat diet) increased CoQ levels and was protective against IR. CoQ supplementation also rescued ceramide-associated IR. Examination of the mitochondrial proteome from human muscle biopsies revealed a strong correlation between the respirasome system and mitochondrial ceramide as key determinants of insulin sensitivity. Our findings highlight the mitochondrial ceramide-CoQ-respiratory chain nexus as a potential foundation of an IR pathway that may also play a critical role in other conditions associated with ceramide accumulation and mitochondrial dysfunction, such as heart failure, cancer, and aging. These insights may have important clinical implications for the development of novel therapeutic strategies for the treatment of IR and related metabolic disorders.


Asunto(s)
Diabetes Mellitus Tipo 2 , Resistencia a la Insulina , Enfermedades Mitocondriales , Humanos , Ratones , Animales , Ubiquinona , Transporte de Electrón , Diabetes Mellitus Tipo 2/metabolismo , Ceramidas/metabolismo , Ratones Endogámicos C57BL , Músculo Esquelético/metabolismo , Enfermedades Mitocondriales/patología
3.
Cancer Immunol Immunother ; 72(12): 4001-4014, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37973660

RESUMEN

BACKGROUND: Regulation of alternative splicing is a new therapeutic approach in cancer. The programmed cell death receptor 1 (PD-1) is an immunoinhibitory receptor expressed on immune cells that binds to its ligands, PD-L1 and PD-L2 expressed by cancer cells forming a dominant immune checkpoint pathway in the tumour microenvironment. Targeting this pathway using blocking antibodies (nivolumab and pembrolizumab) is the mainstay of anti-cancer immunotherapies, restoring the function of exhausted T cells. PD-1 is alternatively spliced to form isoforms that are either transmembrane signalling receptors (flPD1) that mediate T cell death by binding to the ligand, PD-L1 or an alternatively spliced, soluble, variant that lacks the transmembrane domain. METHODS: We used PCR and western blotting on primary peripheral blood mononuclear cells (PBMCs) and Jurkat T cells, IL-2 ELISA, flow cytometry, co-culture of melanoma and cholangiocarcinoma cells, and bioinformatics analysis and molecular cloning to examine the mechanism of splicing of PD1 and its consequence. RESULTS: The soluble form of PD-1, generated by skipping exon 3 (∆Ex3PD1), was endogenously expressed in PBMCs and T cells and prevents cancer cell-mediated T cell repression. Multiple binding sites of SRSF1 are adjacent to PD-1 exon 3 splicing sites. Overexpression of phosphomimic SRSF1 resulted in preferential expression of flPD1. Inhibition of SRSF1 phosphorylation both by SRPK1 shRNA knockdown and by a selective inhibitor, SPHINX31, resulted in a switch in splicing to ∆Ex3PD1. Cholangiocarcinoma cell-mediated repression of T cell IL-2 expression was reversed by SPHINX31 (equivalent to pembrolizumab). CONCLUSIONS: These results indicate that switching of the splicing decision from flPD1 to ∆Ex3PD1 by targeting SRPK1 could represent a potential novel mechanism of immune checkpoint inhibition in cancer.


Asunto(s)
Empalme Alternativo , Colangiocarcinoma , Humanos , Fosforilación , Antígeno B7-H1/genética , Antígeno B7-H1/metabolismo , Proteínas Serina-Treonina Quinasas/genética , Factores de Empalme de ARN/genética , Factores de Empalme de ARN/metabolismo , Arginina/genética , Arginina/metabolismo , Serina/química , Serina/genética , Serina/metabolismo , Agotamiento de Células T , Interleucina-2/genética , Leucocitos Mononucleares/metabolismo , Receptor de Muerte Celular Programada 1/metabolismo , Factores de Empalme Serina-Arginina/genética , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Inmunoterapia
4.
Front Mol Neurosci ; 16: 1181626, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37456522

RESUMEN

Alzheimer's disease (AD) is the most common cause of dementia, the chronic and progressive deterioration of memory and cognitive abilities. AD can be pathologically characterised by neuritic plaques and neurofibrillary tangles, formed by the aberrant aggregation of ß-amyloid and tau proteins, respectively. We tested the hypothesis that VEGF isoforms VEGF-A165a and VEGF-A165b, produced by differential splice site selection in exon 8, could differentially protect neurons from neurotoxicities induced by ß-amyloid and tau proteins, and that controlling expression of splicing factor kinase activity could have protective effects on AD-related neurotoxicity in vitro. Using oxidative stress, ß-amyloid, and tau hyperphosphorylation models, we investigated the effect of VEGF-A splicing isoforms, previously established to be neurotrophic agents, as well as small molecule kinase inhibitors, which selectively inhibit SRPK1, the major regulator of VEGF splicing. While both VEGF-A165a and VEGF-A165b isoforms were protective against AD-related neurotoxicity, measured by increased metabolic activity and neurite outgrowth, VEGF-A165a was able to enhance neurite outgrowth but VEGF-A165b did not. In contrast, VEGF-A165b was more effective than VEGF-A165a in preventing neurite "dieback" in a tau hyperphosphorylation model. SRPK1 inhibition was found to significantly protect against neurite "dieback" through shifting AS of VEGFA towards the VEGF-A165b isoform. These results indicate that controlling the activities of the two different isoforms could have therapeutic potential in Alzheimer's disease, but their effect may depend on the predominant mechanism of the neurotoxicity-tau or ß-amyloid.

5.
Am J Physiol Heart Circ Physiol ; 322(6): H1014-H1027, 2022 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-35302878

RESUMEN

Angiogenic VEGF isoforms are upregulated in diabetic retinopathy (DR), driving pathological growth and fluid leakage. Serine-arginine-rich protein kinase-1 (SRPK1) regulates VEGF splicing, and its inhibition blocks angiogenesis. We tested the hypothesis that SRPK1 is activated in diabetes, and an SRPK1 inhibitor (SPHINX31) switches VEGF splicing in DR and prevents increased vascular permeability into the retina. SRPK1 was activated by high glucose (HG), in a PKC-dependent manner, and was blocked by SPHINX31. HG induced release of SRSF1 from the nuclear speckles, which was also SRPK1 dependent, and increased retinal pigment epithelial (RPE) monolayer admittance, which was reversed by SRPK1 inhibition (P < 0.05). Diabetes increased retinal permeability and thickness after 14 days which was blocked by treatment with SPHINX31 eye drops (P < 0.0001). These results show that SRPK1 inhibition, administered as an eye drop, protected the retinal barrier from hyperglycemia-associated loss of integrity in RPE cells in vitro and in diabetic rats in vivo. A clinical trial of another SRPK1 inhibitor has now been initiated in patients with diabetic macular edema.NEW & NOTEWORTHY VEGF-A165b splicing is induced by hyperglycemia through PKC-mediated activation of SRPK1 in RPE cells, increasing their permeability and angiogenic capability. SRPK1 inhibitors can be given as eye drops to reduce retinal permeability and edema in diabetic retinopathy.


Asunto(s)
Diabetes Mellitus Experimental , Retinopatía Diabética , Hiperglucemia , Edema Macular , Animales , Arginina , Diabetes Mellitus Experimental/complicaciones , Diabetes Mellitus Experimental/tratamiento farmacológico , Retinopatía Diabética/tratamiento farmacológico , Humanos , Soluciones Oftálmicas , Inhibidores de Proteínas Quinasas/farmacología , Proteínas Serina-Treonina Quinasas , Ratas , Serina , Factores de Empalme Serina-Arginina , Factor A de Crecimiento Endotelial Vascular/metabolismo
6.
Chem Res Toxicol ; 34(6): 1681-1692, 2021 06 21.
Artículo en Inglés | MEDLINE | ID: mdl-34085520

RESUMEN

The heme enzyme myeloperoxidase (MPO) is a key mediator of endothelial dysfunction and a therapeutic target in cardiovascular disease. During inflammation, MPO released by circulating leukocytes is internalized by endothelial cells and transcytosed into the subendothelial extracellular matrix of diseased vessels. At this site, MPO mediates endothelial dysfunction by catalytically consuming nitric oxide (NO) and producing reactive oxidants, hypochlorous acid (HOCl) and the nitrogen dioxide radical (•NO2). Accordingly, there is interest in developing MPO inhibitors that effectively target endothelial-localized MPO. Here we studied a series of piperidine nitroxides conjugated to polyamine moieties as novel endothelial-targeted MPO inhibitors. Electron paramagnetic resonance analysis of cell lysates showed that polyamine conjugated nitroxides were efficiently internalized into endothelial cells in a heparan sulfate dependent manner. Nitroxides effectively inhibited the consumption of MPO's substrate hydrogen peroxide (H2O2) and formation of HOCl catalyzed by endothelial-localized MPO, with their efficacy dependent on both nitroxide and conjugated-polyamine structure. Nitroxides also differentially inhibited protein nitration catalyzed by both purified and endothelial-localized MPO, which was dependent on •NO2 scavenging rather than MPO inhibition. Finally, nitroxides uniformly inhibited the catalytic consumption of NO by MPO in human plasma. These studies show for the first time that nitroxides effectively inhibit local oxidative reactions catalyzed by endothelial-localized MPO. Novel polyamine-conjugated nitroxides, ethylenediamine-TEMPO and putrescine-TEMPO, emerged as efficacious nitroxides uniquely exhibiting high endothelial cell uptake and efficient inhibition of MPO-catalyzed HOCl production, protein nitration, and NO oxidation. Polyamine-conjugated nitroxides represent a versatile class of antioxidant drugs capable of targeting endothelial-localized MPO during vascular inflammation.


Asunto(s)
Células Endoteliales/efectos de los fármacos , Inhibidores Enzimáticos/farmacología , Óxido Nítrico/farmacología , Peroxidasa/antagonistas & inhibidores , Poliaminas/farmacología , Biocatálisis , Células Endoteliales/enzimología , Inhibidores Enzimáticos/química , Inhibidores Enzimáticos/metabolismo , Humanos , Óxido Nítrico/química , Óxido Nítrico/metabolismo , Oxidación-Reducción , Peroxidasa/metabolismo , Poliaminas/química , Poliaminas/metabolismo
7.
Neurooncol Adv ; 3(1): vdab169, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34988452

RESUMEN

BACKGROUND: Diffuse intrinsic pontine glioma (DIPG) is a fatal childhood brainstem tumor for which radiation is the only treatment. Case studies report a clinical response to ONC201 for patients with H3K27M-mutant gliomas. Oncoceutics (ONC201) is only available in the United States and Japan; however, in Germany, DIPG patients can be prescribed and dispensed a locally produced compound-ONC201 German-sourced ONC201 (GsONC201). Pediatric oncologists face the dilemma of supporting the administration of GsONC201 as conjecture surrounds its authenticity. Therefore, we compared GsONC201 to original ONC201 manufactured by Oncoceutics Inc. METHODS: Authenticity of GsONC201 was determined by high-resolution mass spectrometry and nuclear magnetic resonance spectroscopy. Biological activity was shown via assessment of on-target effects, in vitro growth, proliferation, and apoptosis analysis. Patient-derived xenograft mouse models were used to assess plasma and brain tissue pharmacokinetics, pharmacodynamics, and overall survival (OS). The clinical experience of 28 H3K27M+ mutant DIPG patients who received GsONC201 (2017-2020) was analyzed. RESULTS: GsONC201 harbored the authentic structure, however, was formulated as a free base rather than the dihydrochloride salt used in clinical trials. GsONC201 in vitro and in vivo efficacy and drug bioavailability studies showed no difference compared to Oncoceutics ONC201. Patients treated with GsONC201 (n = 28) showed a median OS of 18 months (P = .0007). GsONC201 patients who underwent reirradiation showed a median OS of 22 months compared to 12 months for GsONC201 patients who did not (P = .012). CONCLUSIONS: This study confirms the biological activity of GsONC201 and documents the OS of patients who received the drug; however, GsONC201 was never used as a monotherapy.

9.
BMC Pulm Med ; 19(1): 31, 2019 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-30732588

RESUMEN

BACKGROUND: Tumour necrosis factor-related apoptosis-inducing ligand (TRAIL) has previously been demonstrated to play a pro-inflammatory role in allergic airways disease and COPD through the upregulation of the E3 ubiquitin ligase MID1 and the subsequent deactivation of protein phosphatase 2A (PP2A). METHODS: Biopsies were taken from eight IPF patients presenting to the Second Affiliated Hospital of Jilin University, China between January 2013 and February 2014 with control samples obtained from resected lung cancers. Serum TRAIL, MID1 protein and PP2A activity in biopsies, and patients' lung function were measured. Wild type and TRAIL deficient Tnfsf10-/- BALB/c mice were administered bleomycin to induce fibrosis and some groups were treated with the FTY720 analogue AAL(s) to activate PP2A. Mouse fibroblasts were treated with recombinant TRAIL and fibrotic responses were assessed. RESULTS: TRAIL in serum and MID1 protein levels in biopsies from IPF patients were increased compared to controls. MID1 levels were inversely associated while PP2A activity levels correlated with DLco. Tnfsf10-/- and mice treated with the PP2A activator AAL(s) were largely protected against bleomycin-induced reductions in lung function and fibrotic changes. Addition of recombinant TRAIL to mouse fibroblasts in-vitro increased collagen production which was reversed by PP2A activation with AAL(s). CONCLUSION: TRAIL signalling through MID1 deactivates PP2A and promotes fibrosis with corresponding lung function decline. This may provide novel therapeutic targets for IPF.


Asunto(s)
Proteínas de Microtúbulos/metabolismo , Proteínas Nucleares/metabolismo , Fibrosis Pulmonar/patología , Ligando Inductor de Apoptosis Relacionado con TNF/sangre , Factores de Transcripción/metabolismo , Anciano , Anciano de 80 o más Años , Animales , Estudios de Casos y Controles , China , Colágeno/metabolismo , Femenino , Humanos , Masculino , Ratones Endogámicos BALB C , Ratones Noqueados , Proteínas de Microtúbulos/genética , Persona de Mediana Edad , Proteínas Nucleares/genética , Proteína Fosfatasa 2/genética , Proteína Fosfatasa 2/metabolismo , Proteínas/genética , Proteínas/metabolismo , Fibrosis Pulmonar/inducido químicamente , Fibrosis Pulmonar/metabolismo , Transducción de Señal , Ligando Inductor de Apoptosis Relacionado con TNF/genética , Factores de Transcripción/genética , Ubiquitina-Proteína Ligasas/metabolismo
10.
Clin Transl Immunology ; 8(10): e01084, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31921419

RESUMEN

OBJECTIVE: Chronic obstructive pulmonary disease (COPD) is a progressive disease that causes significant mortality and morbidity worldwide and is primarily caused by the inhalation of cigarette smoke (CS). Lack of effective treatments for COPD means there is an urgent need to identify new therapeutic strategies for the underlying mechanisms of pathogenesis. Tristetraprolin (TTP) encoded by the Zfp36 gene is an anti-inflammatory protein that induces mRNA decay, especially of transcripts encoding inflammatory cytokines, including those implicated in COPD. METHODS: Here, we identify a novel protective role for TTP in CS-induced experimental COPD using Zfp36aa/aa mice, a genetically modified mouse strain in which endogenous TTP cannot be phosphorylated, rendering it constitutively active as an mRNA-destabilising factor. TTP wild-type (Zfp36 +/+) and Zfp36aa/aa active C57BL/6J mice were exposed to CS for four days or eight weeks, and the impact on acute inflammatory responses or chronic features of COPD, respectively, was assessed. RESULTS: After four days of CS exposure, Zfp36aa/aa mice had reduced numbers of airway neutrophils and lymphocytes and mRNA expression levels of cytokines compared to wild-type controls. After eight weeks, Zfp36aa/aa mice had reduced pulmonary inflammation, airway remodelling and emphysema-like alveolar enlargement, and lung function was improved. We then used pharmacological treatments in vivo (protein phosphatase 2A activator, AAL(S), and the proteasome inhibitor, bortezomib) to promote the activation and stabilisation of TTP and show that hallmark features of CS-induced experimental COPD were ameliorated. CONCLUSION: Collectively, our study provides the first evidence for the therapeutic potential of inducing TTP as a treatment for COPD.

11.
Nat Commun ; 9(1): 5378, 2018 12 19.
Artículo en Inglés | MEDLINE | ID: mdl-30568163

RESUMEN

We recently identified the splicing kinase gene SRPK1 as a genetic vulnerability of acute myeloid leukemia (AML). Here, we show that genetic or pharmacological inhibition of SRPK1 leads to cell cycle arrest, leukemic cell differentiation and prolonged survival of mice transplanted with MLL-rearranged AML. RNA-seq analysis demonstrates that SRPK1 inhibition leads to altered isoform levels of many genes including several with established roles in leukemogenesis such as MYB, BRD4 and MED24. We focus on BRD4 as its main isoforms have distinct molecular properties and find that SRPK1 inhibition produces a significant switch from the short to the long isoform at the mRNA and protein levels. This was associated with BRD4 eviction from genomic loci involved in leukemogenesis including BCL2 and MYC. We go on to show that this switch mediates at least part of the anti-leukemic effects of SRPK1 inhibition. Our findings reveal that SRPK1 represents a plausible new therapeutic target against AML.


Asunto(s)
Leucemia Mieloide Aguda/metabolismo , Proteínas Nucleares/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Factores de Transcripción/metabolismo , Puntos de Control del Ciclo Celular , Proteínas de Ciclo Celular , Diferenciación Celular , Cromatina/metabolismo , Epigénesis Genética , Células HL-60 , Hematopoyesis , Humanos , Células K562 , Isoformas de Proteínas/metabolismo , Proteínas Serina-Treonina Quinasas/antagonistas & inhibidores , Proteínas Serina-Treonina Quinasas/genética , Empalme del ARN
12.
Nat Commun ; 9(1): 3165, 2018 08 21.
Artículo en Inglés | MEDLINE | ID: mdl-30131496

RESUMEN

Specific forms of the lipid ceramide, synthesized by the ceramide synthase enzyme family, are believed to regulate metabolic physiology. Genetic mouse models have established C16 ceramide as a driver of insulin resistance in liver and adipose tissue. C18 ceramide, synthesized by ceramide synthase 1 (CerS1), is abundant in skeletal muscle and suggested to promote insulin resistance in humans. We herein describe the first isoform-specific ceramide synthase inhibitor, P053, which inhibits CerS1 with nanomolar potency. Lipidomic profiling shows that P053 is highly selective for CerS1. Daily P053 administration to mice fed a high-fat diet (HFD) increases fatty acid oxidation in skeletal muscle and impedes increases in muscle triglycerides and adiposity, but does not protect against HFD-induced insulin resistance. Our inhibitor therefore allowed us to define a role for CerS1 as an endogenous inhibitor of mitochondrial fatty acid oxidation in muscle and regulator of whole-body adiposity.


Asunto(s)
Inhibidores Enzimáticos/farmacología , Metabolismo de los Lípidos/efectos de los fármacos , Oxidorreductasas/antagonistas & inhibidores , Animales , Respiración de la Célula/efectos de los fármacos , Dieta Alta en Grasa , Inhibidores Enzimáticos/química , Ácidos Grasos/metabolismo , Células HEK293 , Humanos , Concentración 50 Inhibidora , Resistencia a la Insulina , Hígado/efectos de los fármacos , Hígado/metabolismo , Masculino , Ratones Endogámicos C57BL , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Músculo Esquelético/metabolismo , Oxidación-Reducción , Oxidorreductasas/metabolismo , Esfingolípidos/metabolismo
13.
Angew Chem Int Ed Engl ; 56(29): 8536-8538, 2017 07 10.
Artículo en Inglés | MEDLINE | ID: mdl-28470990

RESUMEN

The first total synthesis of the potent antimalarial 7,3'-linked naphthylisoquinoline alkaloid dioncophylline E (1) has been completed. The synthesis proceeds in 12 steps (longest linear sequence) and in 15 % overall yield. Key transformations include an ortho-arylation of a naphthol with an aryllead triacetate to construct the sterically hindered biaryl bond, and a three-step sequence to stereoselectively generate the trans-1,3-dimethyl-1,2,3,4-tetrahydroisoquinoline moiety.


Asunto(s)
Isoquinolinas/síntesis química , Isoquinolinas/química , Estructura Molecular
14.
Biochem Pharmacol ; 135: 90-115, 2017 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-28344126

RESUMEN

The leukocyte-derived heme enzyme myeloperoxidase (MPO) is released extracellularly during inflammation and impairs nitric oxide (NO) bioavailability by directly oxidizing NO or producing NO-consuming substrate radicals. Here, structurally diverse pharmacological agents with activities as MPO substrates/inhibitors or antioxidants were screened for their effects on MPO NO oxidase activity in human plasma and physiological model systems containing endogenous MPO substrates/antioxidants (tyrosine, urate, ascorbate). Hydrazide-based irreversible/reversible MPO inhibitors (4-ABAH, isoniazid) or the sickle cell anaemia drug, hydroxyurea, all promoted MPO NO oxidase activity. This involved the capacity of NO to antagonize MPO inhibition by hydrazide-derived radicals and/or the ability of drug-derived radicals to stimulate MPO turnover thereby increasing NO consumption by MPO redox intermediates or NO-consuming radicals. In contrast, the mechanism-based irreversible MPO inhibitor 2-thioxanthine, potently inhibited MPO turnover and NO consumption. Although the phenolics acetaminophen and resveratrol initially increased MPO turnover and NO consumption, they limited the overall extent of NO loss by rapidly depleting H2O2 and promoting the formation of ascorbyl radicals, which inefficiently consume NO. The vitamin E analogue trolox inhibited MPO NO oxidase activity in ascorbate-depleted fluids by scavenging NO-consuming tyrosyl and urate radicals. Tempol and related nitroxides decreased NO consumption in ascorbate-replete fluids by scavenging MPO-derived ascorbyl radicals. Indoles or apocynin yielded marginal effects. Kinetic analyses rationalized differences in drug activities and identified criteria for the improved inhibition of MPO NO oxidase activity. This study reveals that widely used agents have important implications for MPO NO oxidase activity under physiological conditions, highlighting new pharmacological strategies for preserving NO bioavailability during inflammation.


Asunto(s)
Antioxidantes/farmacología , Inhibidores Enzimáticos/farmacología , Óxido Nítrico/antagonistas & inhibidores , Óxido Nítrico/metabolismo , Peroxidasa/antagonistas & inhibidores , Peroxidasa/metabolismo , Activación Enzimática/efectos de los fármacos , Activación Enzimática/fisiología , Humanos , Oxidorreductasas/antagonistas & inhibidores , Oxidorreductasas/metabolismo
15.
ACS Chem Biol ; 12(3): 825-832, 2017 03 17.
Artículo en Inglés | MEDLINE | ID: mdl-28135068

RESUMEN

Serine/arginine-protein kinase 1 (SRPK1) regulates alternative splicing of VEGF-A to pro-angiogenic isoforms and SRPK1 inhibition can restore the balance of pro/antiangiogenic isoforms to normal physiological levels. The lack of potency and selectivity of available compounds has limited development of SRPK1 inhibitors, with the control of alternative splicing by splicing factor-specific kinases yet to be translated. We present here compounds that occupy a binding pocket created by the unique helical insert of SRPK1, and trigger a backbone flip in the hinge region, that results in potent (<10 nM) and selective inhibition of SRPK1 kinase activity. Treatment with these inhibitors inhibited SRPK1 activity and phosphorylation of serine/arginine splicing factor 1 (SRSF1), resulting in alternative splicing of VEGF-A from pro-angiogenic to antiangiogenic isoforms. This property resulted in potent inhibition of blood vessel growth in models of choroidal angiogenesis in vivo. This work identifies tool compounds for splice isoform selective targeting of pro-angiogenic VEGF, which may lead to new therapeutic strategies for a diversity of diseases where dysfunctional splicing drives disease development.


Asunto(s)
Neovascularización Coroidal/tratamiento farmacológico , Inhibidores Enzimáticos/uso terapéutico , Proteínas Serina-Treonina Quinasas/antagonistas & inhibidores , Administración Oftálmica , Humanos
16.
Pharmacol Rev ; 69(1): 63-79, 2017 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-28034912

RESUMEN

More than 95% of genes in the human genome are alternatively spliced to form multiple transcripts, often encoding proteins with differing or opposing function. The control of alternative splicing is now being elucidated, and with this comes the opportunity to develop modulators of alternative splicing that can control cellular function. A number of approaches have been taken to develop compounds that can experimentally, and sometimes clinically, affect splicing control, resulting in potential novel therapeutics. Here we develop the concepts that targeting alternative splicing can result in relatively specific pathway inhibitors/activators that result in dampening down of physiologic or pathologic processes, from changes in muscle physiology to altering angiogenesis or pain. The targets and pharmacology of some of the current inhibitors/activators of alternative splicing are demonstrated and future directions discussed.


Asunto(s)
Empalme Alternativo/efectos de los fármacos , Descubrimiento de Drogas/métodos , Terapia Molecular Dirigida , ARN/metabolismo , Animales , Regulación de la Expresión Génica/efectos de los fármacos , Humanos , ARN/genética , Transducción de Señal/efectos de los fármacos , Transcripción Genética/efectos de los fármacos
17.
Sci Rep ; 6: 37297, 2016 11 16.
Artículo en Inglés | MEDLINE | ID: mdl-27849062

RESUMEN

Protein phosphatase 2A (PP2A) activity can be enhanced pharmacologically by PP2A-activating drugs (PADs). The sphingosine analog FTY720 is the best known PAD and we have shown that FTY720 represses production of pro-inflammatory cytokines responsible for respiratory disease pathogenesis. Whether its phosphorylated form, FTY720-P, also enhances PP2A activity independently of the sphingosine 1-phosphate (S1P) pathway was unknown. Herein, we show that FTY720-P enhances TNF-induced PP2A phosphatase activity and significantly represses TNF-induced interleukin 6 (IL-6) and IL-8 mRNA expression and protein secretion from A549 lung epithelial cells. Comparing FTY720 and FTY720-P with S1P, we show that unlike S1P, the sphingosine analogs do not induce cytokine production on their own. In fact, FTY720 and FTY720-P significantly repress S1P-induced IL-6 and IL-8 production. We then examined their impact on expression of cyclooxygenase 2 (COX-2) and resultant prostaglandin E2 (PGE2) production. S1P did not increase production of this pro-inflammatory enzyme because COX-2 mRNA gene expression is NF-κB-dependent, and unlike TNF, S1P did not activate NF-κB. However, TNF-induced COX-2 mRNA expression and PGE2 secretion is repressed by FTY720 and FTY720-P. Hence, FTY720-P enhances PP2A activity and that PADs can repress production of pro-inflammatory cytokines and enzymes in A549 lung epithelial cells in a manner devoid of S1P agonism.


Asunto(s)
Células Epiteliales/efectos de los fármacos , Inflamación/prevención & control , Organofosfatos/farmacología , Proteína Fosfatasa 2/metabolismo , Esfingosina/análogos & derivados , Células A549 , Ciclooxigenasa 2/genética , Ciclooxigenasa 2/metabolismo , Dinoprostona/metabolismo , Activación Enzimática/efectos de los fármacos , Células Epiteliales/metabolismo , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Humanos , Inflamación/genética , Inflamación/metabolismo , Interleucina-6/genética , Interleucina-6/metabolismo , Interleucina-8/genética , Interleucina-8/metabolismo , Pulmón/patología , Lisofosfolípidos/farmacología , Esfingosina/farmacología , Factor de Necrosis Tumoral alfa/farmacología
18.
Org Biomol Chem ; 14(20): 4605-16, 2016 May 18.
Artículo en Inglés | MEDLINE | ID: mdl-27102578

RESUMEN

AAL(S), the chiral deoxy analog of the FDA approved drug FTY720, has been shown to inhibit proliferation and apoptosis in several cancer cell lines. It has been suggested that it does this by activating protein phosphatase 2A (PP2A). Here we report the synthesis of new cytotoxic analogs of AAL(S) and the evaluation of their cytotoxicity in two myeloid cell lines, one of which is sensitive to PP2A activation. We show that these analogs activate PP2A in these cells supporting the suggested mechanism for their cytotoxic properties. Our findings identify key structural motifs required for anti-cancer effects.


Asunto(s)
Antineoplásicos/síntesis química , Antineoplásicos/farmacología , Diseño de Fármacos , Clorhidrato de Fingolimod/síntesis química , Clorhidrato de Fingolimod/farmacología , Leucemia Mieloide Aguda/tratamiento farmacológico , Proteína Fosfatasa 2/metabolismo , Antineoplásicos/química , Antineoplásicos/uso terapéutico , Activación Enzimática/efectos de los fármacos , Clorhidrato de Fingolimod/química , Clorhidrato de Fingolimod/uso terapéutico , Leucemia Mieloide Aguda/enzimología
19.
Bioorg Med Chem ; 24(7): 1480-7, 2016 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-26906473

RESUMEN

A flexible and efficient synthesis of the neuroprotective alkaloid, dictyoquinazol A, is reported. Several structural analogues of the target molecule were produced, and the neuroprotective activity of this series of compounds was investigated using three different cell-based models of stroke. Several of the new compounds were found to have superior activity compared to the natural product. This work has established a new molecular scaffold that holds promise for a novel pharmaceutical treatment for stroke.


Asunto(s)
Fármacos Neuroprotectores/síntesis química , Fármacos Neuroprotectores/farmacología , Quinazolinas/química , Quinazolinas/farmacología , Accidente Cerebrovascular/tratamiento farmacológico , Muerte Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Humanos , Estructura Molecular , Fármacos Neuroprotectores/química , Quinazolinas/síntesis química , Relación Estructura-Actividad , Células Tumorales Cultivadas
20.
Cell Signal ; 28(4): 325-34, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-26820662

RESUMEN

Chronic respiratory diseases are driven by inflammation, but some clinical conditions (severe asthma, COPD) are refractory to conventional anti-inflammatory therapies. Thus, novel anti-inflammatory strategies are necessary. The mRNA destabilizing protein, tristetraprolin (TTP), is an anti-inflammatory molecule that functions to induce mRNA decay of cytokines that drive pathogenesis of respiratory disorders. TTP is regulated by phosphorylation and protein phosphatase 2A (PP2A) is responsible for dephosphorylating (and hence activating) TTP, amongst other targets. PP2A is activated by small molecules, FTY720 and AAL(S), and in this study we examine whether these compounds repress cytokine production in a cellular model of airway inflammation using A549 lung epithelial cells stimulated with tumor necrosis factor α (TNFα) in vitro. PP2A activators significantly increase TNFα-induced PP2A activity and inhibit mRNA expression and protein secretion of interleukin 8 (IL-8) and IL-6; two key pro-inflammatory cytokines implicated in respiratory disease and TTP targets. The effect of PP2A activators is not via an increase in TNFα-induced TTP mRNA expression; instead we demonstrate a link between PP2A activation and TTP anti-inflammatory function by showing that specific knockdown of TTP with siRNA reversed the repression of TNFα-induced IL-8 and IL-6 mRNA expression and protein secretion by FTY720. Therefore we propose that PP2A activators affect the dynamic equilibrium regulating TTP; shifting the equilibrium from phosphorylated (inactive) towards unphosphorylated (active) but unstable TTP. PP2A activators boost the anti-inflammatory function of TTP and have implications for future pharmacotherapeutic strategies to combat inflammation in respiratory disease.


Asunto(s)
Células Epiteliales/metabolismo , Pulmón/metabolismo , Proteína Fosfatasa 2/metabolismo , Mucosa Respiratoria/metabolismo , Tristetraprolina/metabolismo , Línea Celular , Activación Enzimática/efectos de los fármacos , Clorhidrato de Fingolimod/farmacología , Humanos , Proteína Fosfatasa 2/genética , Tristetraprolina/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA