Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros

Base de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Colloid Interface Sci ; 613: 415-425, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-35042039

RESUMEN

HYPOTHESIS: Interphase properties in composites, adhesives and protective coatings can be predicted on the basis of interfacial interactions between polymeric precursor molecules and the inorganic surface during network formation. The strength of molecular interactions is expected to determine local segmental mobility (polymer glass transition temperature, Tg) and cure degree. EXPERIMENTS: Conventional analysis techniques and atomic force microscopy coupled with infrared (AFM-IR) are applied to nanocomposite specimens to precisely characterise the epoxy-amine/iron oxide interphase, whilst molecular dynamics simulations are applied to identify the molecular interactions underpinning its formation. FINDINGS: Attenuated total reflectance Fourier transform infrared (ATR-FTIR) spectroscopy and high-resolution AFM-IR mapping confirm the presence of nanoscale under-cured interphase regions. Interfacial segregation of the molecular triethylenetetraamine (TETA) cross-linker results in an excess of epoxy functionality near synthetic hematite, (Fe2O3) magnetite (Fe3O4) and goethite (Fe(O)OH) particle surfaces. This occurs independently of the variable surface binding energies, as a result of entropic segregation during the cure. Thermal analysis and molecular dynamics simulations demonstrate that restricted segmental motion is imparted by strong interfacial binding between surface Fe sites in goethite, where the position of surface hydroxyl protons enables synergistic hydrogen bonding and electrostatic binding to Fe atoms at specific sites. This provides a strong driving force for molecular orientation resulting in significantly raised Tg values for the goethite composite samples.


Asunto(s)
Compuestos Férricos , Óxido Ferrosoférrico , Aminas , Interfase
2.
Anal Chem ; 92(12): 8117-8124, 2020 Jun 16.
Artículo en Inglés | MEDLINE | ID: mdl-32412736

RESUMEN

AFM-IR combines the chemical sensitivity of infrared spectroscopy with the lateral resolution of scanning probe microscopy, allowing nanoscale chemical analysis of almost any organic material under ambient conditions. As a result, this versatile technique is rapidly gaining popularity among materials scientists. Here, we report a previously overlooked source of data and artifacts in AFM-IR analysis; reflection from the buried interface. Periodic arrays of gold on glass are used to show that the overall signal in AFM-IR is affected by the wavelength-dependent reflectivity and thermal response of the underlying substrate. Excitingly, this demonstrates that remote analysis of heterogeneities at the buried interface is possible alongside that of an overlying organic film. On the other hand, AFM-IR users should carefully consider the composition and topography of underlying substrates when interpreting nanoscale infrared data. The common practice of generating ratio images, or indeed the normalization of AFM-IR spectra, should be approached with caution in the presence of substrate heterogeneity or variable sample thickness.

3.
Nat Commun ; 11(1): 1849, 2020 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-32296060

RESUMEN

Photo-activated resin composites are widely used in industry and medicine. Despite extensive chemical characterisation, the micro-scale pattern of resin matrix reactive group conversion between filler particles is not fully understood. Using an advanced synchrotron-based wide-field IR imaging system and state-of-the-art Mie scattering corrections, we observe how the presence of monodispersed silica filler particles in a methacrylate based resin reduces local conversion and chemical bond strain in the polymer phase. Here we show that heterogeneity originates from a lower converted and reduced bond strain boundary layer encapsulating each particle, whilst at larger inter-particulate distances light attenuation and monomer mobility predominantly influence conversion. Increased conversion corresponds to greater bond strain, however, strain generation appears sensitive to differences in conversion rate and implies subtle distinctions in the final polymer structure. We expect these findings to inform current predictive models of mechanical behaviour in polymer-composite materials, particularly at the resin-filler interface.

4.
Sci Rep ; 8(1): 17450, 2018 11 28.
Artículo en Inglés | MEDLINE | ID: mdl-30487636

RESUMEN

Polyphosphate corrosion inhibitors are increasingly marketed as chromate replacements for coil coated steel. The mechanisms underpinning corrosion prevention by these species is, however, not fully understood; corrosion inhibition is ordinarily assessed using electrochemical techniques, followed by ex-situ surface analysis. As a result, the formation of a clear film over cathodic sites is known to contribute to corrosion prevention, but little is known about its formation. Here, we apply advanced microscopy techniques (in-situ fluid cell AFM, SEM-EDX, and AFM-IR nano-chemical analysis) to examine early cathodic film formation by strontium aluminium polyphosphate (SAPP) in detail. For a model cut edge system, it is found that cathodic inhibition dominates during the first 24 hours of immersion, and surprisingly, that strontium carbonate impurities play a significant role. Rapidly precipitated zinc carbonate provides protection almost immediately after immersion, before the film structure evolves to include (poly)phosphate species. This suggests that the purposeful inclusion of carbonates may provide a new, environmentally sound approach to enhancing inhibitor efficacy.

5.
ACS Appl Mater Interfaces ; 9(11): 10169-10179, 2017 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-28256818

RESUMEN

As linseed oil has a longstanding and continuing history of use as a binder in artistic paints, developing an understanding of its degradation mechanism is critical to conservation efforts. At present, little can be done to detect the early stages of oil paint deterioration due to the complex chemical composition of degrading paints. In this work, we use advanced infrared analysis techniques to investigate the UV-induced deterioration of model linseed oil paints in detail. Subdiffraction limit infrared analysis (AFM-IR) is applied to identify and map accelerated degradation in the presence of two different grades of titanium white pigment particles (rutile or anatase TiO2). Differentiation between the degradation of these two formulations demonstrates the sensitivity of this approach. The identification of characteristic peaks and transient species residing at the paint surface allows infrared absorbance peaks related to degradation deeper in the film to be extricated from conventional ATR-FTIR spectra, potentially opening up a new approach to degradation monitoring.

6.
ACS Appl Mater Interfaces ; 8(1): 959-66, 2016 Jan 13.
Artículo en Inglés | MEDLINE | ID: mdl-26694687

RESUMEN

The first direct observation of a chemically heterogeneous nanostructure within an epoxy resin is reported. Epoxy resins comprise the matrix component of many high performance composites, coatings and adhesives, yet the molecular network structure that underpins the performance of these industrially essential materials is not well understood. Internal nodular morphologies have repeatedly been reported for epoxy resins analyzed using SEM or AFM, yet the origin of these features remains a contentious subject, and epoxies are still commonly assumed to be chemically homogeneous. Uniquely, in this contribution we use the recently developed AFM-IR technique to eliminate previous differences in interpretation, and establish that nodule features correspond to heterogeneous network connectivity within an epoxy phenolic formulation.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA