Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Base de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Plant Direct ; 6(11): e458, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36348768

RESUMEN

Zinc (Zn) deficiency remains a public health problem in Malawi, especially among poor and marginalized rural populations, linked with low dietary intake of Zn due to consumption of staple foods that are low in Zn content. The concentration of Zn in staple cereal grain can be increased through application of Zn-enriched fertilizers, a process called agronomic biofortification or agro-fortification. Field experiments were conducted at three Agricultural Research Station sites to assess the potential of agronomic biofortification to improve Zn concentration in maize grain in Malawi as described in registered report published previously. The hypotheses of the study were (i) that application of Zn-enriched fertilizers would increase in the concentration of Zn in maize grain to benefit dietary requirements of Zn and (ii) that Zn concentration in maize grain and the effectiveness of agronomic biofortification would be different between soil types. At each site two different subsites were used, each corresponding to one of two agriculturally important soil types of Malawi, Lixisols and Vertisols. Within each subsite, three Zn fertilizer rates (1, 30, and 90 kg ha-1) were applied to experimental plots, using standard soil application methods, in a randomized complete block design. The experiment had 10 replicates at each of the three sites as informed by a power analysis from a pilot study, published in the registered report for this experiment, designed to detect a 10% increase in grain Zn concentration at 90 kg ha-1, relative to the concentration at 1 kg ha-1. At harvest, maize grain yield and Zn concentration in grain were measured, and Zn uptake by maize grain and Zn harvest index were calculated. At 30 kg ha-1, Zn fertilizer increased maize grain yields by 11% compared with nationally recommended application rate of 1 kg ha-1. Grain Zn concentration increased by 15% and uptake by 23% at the application rate of 30 kg ha-1 relative to the national recommendation rate. The effects of Zn fertilizer application rate on the response variables were not dependent on soil type. The current study demonstrates the importance of increasing the national recommendation rate of Zn fertilizer to improve maize yield and increase the Zn nutritional value of the staple crop.

2.
Plant Direct ; 4(10): e00277, 2020 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-33103047

RESUMEN

The prevalence of micronutrient deficiencies including zinc (Zn) is widespread in Malawi, especially among poor and marginalized rural populations. This is due to low concentrations of Zn in most staple cereal crops and limited consumption of animal source foods. The Zn concentration of cereal grain can be increased through application of Zn-enriched fertilizers; a process termed agronomic biofortification or agro-fortification. This trial protocol describes a field experiment which aims to assess the potential of agronomic biofortification to improve the grain Zn concentration of maize, the predominant staple crop of Malawi. The hypotheses of the study are that application of Zn-enriched fertilizers will create a relatively small increase in the concentration of Zn in maize grains that will be sufficient to benefit dietary supplies of Zn, and that the effectiveness of agronomic biofortification will differ between soil types. The study will be conducted at three sites, Chitedze, Chitala, and Ngabu Agricultural Research Stations, in Lilongwe, Salima, and Chikwawa Districts respectively. These three sites represent locations in the Central and Southern Regions of Malawi. At each site, two different sub-sites will be used, each corresponding to one of two agriculturally important soil types of Malawi, Lixisols, and Vertisols. Within each sub-site, three Zn fertilizer rates (1, 30, and 90 kg/ha) will be applied to experimental plots using standard soil application methods, in a randomized complete block design. The number of replicates at plot level has been informed by a power analysis from pilot study data, assuming that a minimum 10% increase in Zn concentration of grain at 90 kg/ha relative to the concentration at 1 kg/ha is of interest. Grain mass (yield), stover mass, and both stover and grain Zn concentrations will be measured at harvest. A second year of cropping will be used to establish whether there are any residual benefits to grain Zn concentration. The potential for Zn agronomic biofortification will be communicated to relevant academic and government stakeholders through a peer review journal article and a briefing paper.

3.
Sci Total Environ ; 720: 137441, 2020 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-32143037

RESUMEN

Biosolids application to arable land is a common, and cost-effective, practice but the impact of prolonged disposal remains uncertain. We evaluated the dynamics of potentially toxic elements (PTEs) at a long-established 'dedicated' sewage treatment farm. Soil metal concentrations exceeded regulations governing application of biosolids to non-dedicated arable land. However, measurement of isotopic exchangeability of Ni, Cu, Zn, Cd and Pb demonstrated support for the 'protection hypothesis' in which biosolids constituents help immobilise potential toxic metals (PTMs). Metal concentrations in a maize crop were strongly, and almost equally, correlated with all 'capacity-based' and 'intensity-based' estimates of soil metal bioavailability. This was attributable to high correlations between soil factors controlling bioavailability (organic matter, phosphate etc.) on a site receiving a single source of PTMs. Isotopic analysis of the maize crop suggested contributions to foliar Pb from soil dust originating from neighbouring fields. There was also clear evidence of metal-specific effects of biosolids on soil metal lability. With increasing metal concentrations there was both decreasing lability of Cd and Pb, due to interaction with increasing phosphate concentrations, and increasing lability of Ni, Cu and Zn due to weaker soil binding. Such different responses to prolonged biosolids disposal to arable soil should be considered when setting regulatory limits.


Asunto(s)
Suelo , Biosólidos , Metales Pesados , Aguas del Alcantarillado , Contaminantes del Suelo
4.
Sci Total Environ ; 699: 134314, 2020 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-31678875

RESUMEN

Metal bioavailability and phytotoxicity may be exaggerated when derived from studies based on amending soils with soluble metal salts. It is therefore important to evaluate soil tests for their consistency in estimating plant uptake and phytotoxicity in both field-contaminated and freshly-spiked soils. This study aimed to compare the effects of zinc (Zn) on plant growth in soils (i) recently spiked with soluble Zn and (ii) historically amended with biosolids. The objective was to reconcile methods for determining bioavailability in both cases by testing a range of 'quantity-based' and 'intensity-based' assays. Soils with a range of Zn concentrations, from an arable farm used for biosolids disposal for over a century, were further amended with Zn added in solution, and were incubated for one month prior to planting with barley seeds in a glasshouse pot trial. The majority (67-90%) of the added Zn remained isotopically exchangeable after 60 days. Zinc in the solution phase of a soil suspension was present mainly as free Zn2+ ions. Cadmium bioaccumulation factors were inversely proportional to Zn concentration in the soil solution confirming that greater Zn availability suppressed Cd uptake by plants. Measurements of soil Zn 'quantities' (total, EDTA-extractable and isotopically exchangeable) and 'intensity' (solution concentration and free ion activity) were correlated with Zn uptake and toxicity by barley plants. Correlations using Zn intensity were much stronger than those using quantity-based measurements. The free Zn2+ ion activity appears to be a consistent driver for plant uptake and phytotoxic response for both metal-spiked soils and historically contaminated soils. Surprisingly, soil Zn accumulation of up to 100 times the current regulations for normal arable land only produced a mild toxic response suggesting that constituents in biosolids (e.g. organic matter and phosphates) strongly restrict metal bioavailability.


Asunto(s)
Metales/toxicidad , Plantas/metabolismo , Contaminantes del Suelo/toxicidad , Metales/metabolismo , Contaminantes del Suelo/metabolismo , Zinc
5.
Environ Pollut ; 224: 16-25, 2017 May.
Artículo en Inglés | MEDLINE | ID: mdl-28288351

RESUMEN

The disposal of biosolids poses a major environmental and economic problem. Agricultural use is generally regarded as the best means of disposal. However, its impact on soil ecosystems remains uncertain. Biosolids can improve soil properties by supplying nutrients and increasing organic matter content but there is also a potentially detrimental effect arising from the introduction of heavy metals into soils. To assess the balance between these competing effects on soil health, we investigated soil bacterial and fungal diversity and community structure at a site that has been dedicated to the disposal of sewage sludge for over 100 years. Terminal restriction fragment length polymorphism (T-RFLP) was used to characterize the soil microbial communities. The most important contaminants at the site were Ni, Cu, Zn, Cd, and Pb. Concentrations were highly correlated and Zn concentration was adopted as a good indicator of the overall (historical) biosolids loading. A biosolids loading, equivalent to 700-1000 mg kg-1 Zn appeared to be optimal for maximum bacterial and fungal diversity. This markedly exceeds the maximum soil Zn concentration of 300 mg kg-1permitted under the current UK Sludge (use in agriculture) Regulations. Redundancy analysis (RDA) suggested that the soil microbial communities had been altered in response to the accumulation of trace metals, especially Zn, Cd, and Cu. We believe this is the first time the trade-off between positive and negative effects of long term (>100 years) biosolids disposal on soil microorganisms have been observed in the field situation.


Asunto(s)
Aguas del Alcantarillado , Microbiología del Suelo , Contaminantes del Suelo/análisis , Agricultura , Biodiversidad , Metales Pesados/análisis , Aguas del Alcantarillado/química , Oligoelementos/análisis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA