Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Base de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Sci Rep ; 9(1): 12405, 2019 08 27.
Artículo en Inglés | MEDLINE | ID: mdl-31455847

RESUMEN

The circadian clock ensures that behavioral and physiological processes occur at appropriate times during the 24-hour day/night cycle, and is regulated at both the cellular and organismal levels. To identify pathways acting on intact animals, we performed a small molecule screen using a luminescent reporter of molecular circadian rhythms in zebrafish larvae. We identified both known and novel pathways that affect circadian period, amplitude and phase. Several drugs identified in the screen did not affect circadian rhythms in cultured cells derived from luminescent reporter embryos or in established zebrafish and mammalian cell lines, suggesting they act via mechanisms absent in cell culture. Strikingly, using drugs that promote or inhibit inflammation, as well as a mutant that lacks microglia, we found that inflammatory state affects circadian amplitude. These results demonstrate a benefit of performing drug screens using intact animals and provide novel targets for treating circadian rhythm disorders.


Asunto(s)
Ritmo Circadiano/efectos de los fármacos , Bibliotecas de Moléculas Pequeñas/farmacología , Pez Cebra/fisiología , Animales , Animales Modificados Genéticamente/fisiología , Antiinflamatorios no Esteroideos/farmacología , Quinasa de la Caseína I/antagonistas & inhibidores , Quinasa de la Caseína I/metabolismo , Larva/efectos de los fármacos , Larva/fisiología , Inhibidores de Proteínas Quinasas/farmacología , Receptores de Glicina/agonistas , Receptores de Glicina/metabolismo , Taurina/farmacología , Pez Cebra/crecimiento & desarrollo , Proteínas de Pez Cebra/antagonistas & inhibidores , Proteínas de Pez Cebra/metabolismo
2.
J Neurosci ; 36(6): 1823-40, 2016 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-26865608

RESUMEN

The hypothalamus plays an important role in regulating sleep, but few hypothalamic sleep-promoting signaling pathways have been identified. Here we demonstrate a role for the neuropeptide QRFP (also known as P518 and 26RFa) and its receptors in regulating sleep in zebrafish, a diurnal vertebrate. We show that QRFP is expressed in ∼10 hypothalamic neurons in zebrafish larvae, which project to the hypothalamus, hindbrain, and spinal cord, including regions that express the two zebrafish QRFP receptor paralogs. We find that the overexpression of QRFP inhibits locomotor activity during the day, whereas mutation of qrfp or its receptors results in increased locomotor activity and decreased sleep during the day. Despite the restriction of these phenotypes to the day, the circadian clock does not regulate qrfp expression, and entrained circadian rhythms are not required for QRFP-induced rest. Instead, we find that QRFP overexpression decreases locomotor activity largely in a light-specific manner. Our results suggest that QRFP signaling plays an important role in promoting sleep and may underlie some aspects of hypothalamic sleep control. SIGNIFICANCE STATEMENT: The hypothalamus is thought to play a key role in regulating sleep in vertebrate animals, but few sleep-promoting signaling pathways that function in the hypothalamus have been identified. Here we use the zebrafish, a diurnal vertebrate, to functionally and anatomically characterize the neuropeptide QRFP. We show that QRFP is exclusively expressed in a small number of neurons in the larval zebrafish hypothalamus that project widely in the brain. We also show that QRFP overexpression reduces locomotor activity, whereas animals that lack QRFP signaling are more active and sleep less. These results suggest that QRFP signaling participates in the hypothalamic regulation of sleep.


Asunto(s)
Actividad Motora/fisiología , Péptidos/fisiología , Sueño/fisiología , Pez Cebra/fisiología , Secuencia de Aminoácidos , Animales , Ritmo Circadiano/fisiología , Secuencia Conservada , Hipotálamo/metabolismo , Hipotálamo/fisiología , Péptidos y Proteínas de Señalización Intercelular , Larva , Datos de Secuencia Molecular , Neuronas/metabolismo , Péptidos/genética , Péptidos/metabolismo , Receptores de Péptidos/genética , Receptores de Péptidos/metabolismo , Receptores de Péptidos/fisiología , Rombencéfalo/metabolismo , Rombencéfalo/fisiología , Transducción de Señal/fisiología , Médula Espinal/metabolismo , Médula Espinal/fisiología
3.
Neuron ; 89(4): 842-56, 2016 Feb 17.
Artículo en Inglés | MEDLINE | ID: mdl-26889812

RESUMEN

Neuromodulation of arousal states ensures that an animal appropriately responds to its environment and engages in behaviors necessary for survival. However, the molecular and circuit properties underlying neuromodulation of arousal states such as sleep and wakefulness remain unclear. To tackle this challenge in a systematic and unbiased manner, we performed a genetic overexpression screen to identify genes that affect larval zebrafish arousal. We found that the neuropeptide neuromedin U (Nmu) promotes hyperactivity and inhibits sleep in zebrafish larvae, whereas nmu mutant animals are hypoactive. We show that Nmu-induced arousal requires Nmu receptor 2 and signaling via corticotropin releasing hormone (Crh) receptor 1. In contrast to previously proposed models, we find that Nmu does not promote arousal via the hypothalamic-pituitary-adrenal axis, but rather probably acts via brainstem crh-expressing neurons. These results reveal an unexpected functional and anatomical interface between the Nmu system and brainstem arousal systems that represents a novel wake-promoting pathway.


Asunto(s)
Regulación de la Expresión Génica/genética , Neuropéptidos/genética , Neuropéptidos/metabolismo , Sueño/genética , Vigilia/genética , Factores de Edad , Compuestos de Anilina/farmacología , Animales , Tronco Encefálico/citología , Tronco Encefálico/crecimiento & desarrollo , Tronco Encefálico/metabolismo , Regulación de la Expresión Génica/efectos de los fármacos , Humanos , Sistema Hipotálamo-Hipofisario/metabolismo , Larva , Ratones Transgénicos , Actividad Motora/genética , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Sistema Hipófiso-Suprarrenal/metabolismo , Pirimidinas/farmacología , Receptores de Complemento 3b/metabolismo , Receptores de Neurotransmisores/metabolismo , Transducción de Señal/efectos de los fármacos , Transducción de Señal/genética , Pez Cebra , Proteínas de Pez Cebra/genética
4.
Neuron ; 85(6): 1193-9, 2015 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-25754820

RESUMEN

Sleep is an evolutionarily conserved behavioral state whose regulation is poorly understood. A classical model posits that sleep is regulated by homeostatic and circadian mechanisms. Several factors have been implicated in mediating the homeostatic regulation of sleep, but molecules underlying the circadian mechanism are unknown. Here we use animals lacking melatonin due to mutation of arylalkylamine N-acetyltransferase 2 (aanat2) to show that melatonin is required for circadian regulation of sleep in zebrafish. Sleep is dramatically reduced at night in aanat2 mutants maintained in light/dark conditions, and the circadian regulation of sleep is abolished in free-running conditions. We find that melatonin promotes sleep downstream of the circadian clock as it is not required to initiate or maintain circadian rhythms. Additionally, we provide evidence that melatonin may induce sleep in part by promoting adenosine signaling, thus potentially linking circadian and homeostatic control of sleep.


Asunto(s)
Ritmo Circadiano/fisiología , Melatonina/metabolismo , Sueño/fisiología , Pez Cebra/fisiología , Animales , Animales Modificados Genéticamente/genética , N-Acetiltransferasa de Arilalquilamina/genética , Relojes Circadianos/genética , Ritmo Circadiano/genética , Genotipo , Luz
5.
Proc Natl Acad Sci U S A ; 108(24): 9857-62, 2011 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-21613566

RESUMEN

Cadherins play a key role in the dynamics of cell-cell contact formation and remodeling of junctions and tissues. Cadherin-cadherin interactions are gated by extracellular Ca(2+), which serves to rigidify the cadherin extracellular domains and promote trans junctional interactions. Here we describe the direct visualization and quantification of spatiotemporal dynamics of N-cadherin interactions across intercellular junctions in living cells using a genetically encodable FRET reporter system. Direct measurements of transjunctional cadherin interactions revealed a sudden, but partial, loss of homophilic interactions (τ = 1.17 ± 0.06 s(-1)) upon chelation of extracellular Ca(2+). A cadherin mutant with reduced adhesive activity (W2A) exhibited a faster, more substantial loss of homophilic interactions (τ = 0.86 ± 0.02 s(-1)), suggesting two types of native cadherin interactions--one that is rapidly modulated by changes in extracellular Ca(2+) and another with relatively stable adhesive activity that is Ca(2+) independent. The Ca(2+)-sensitive dynamics of cadherin interactions were transmitted to the cell interior where ß-catenin translocated to N-cadherin at the junction in both cells. These data indicate that cadherins can rapidly convey dynamic information about the extracellular environment to both cells that comprise a junction.


Asunto(s)
Cadherinas/metabolismo , Calcio/metabolismo , Uniones Intercelulares/metabolismo , beta Catenina/metabolismo , Animales , Células COS , Cadherinas/genética , Calcio/farmacología , Chlorocebus aethiops , Transferencia Resonante de Energía de Fluorescencia , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Células HEK293 , Humanos , Cinética , Células L , Ratones , Microscopía Confocal , Unión Proteica/efectos de los fármacos , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Transfección , beta Catenina/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA