Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
1.
J Biosci Bioeng ; 135(3): 190-195, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36653270

RESUMEN

Biological containment is a biosafety strategy that prevents the dispersal of genetically modified organisms in natural ecosystems. We previously established a biocontainment system that makes bacterial growth dependent on the availability of phosphite (Pt), an ecologically rare form of phosphorus (P), by introducing Pt metabolic pathway genes and disrupting endogenous phosphate and organic phosphate transporter genes. Although this system proved highly effective, horizontal gene transfer (HGT) mediated recovery of a P transporter gene is considered as a potential pathway to abolish the Pt-dependent growth, resulting in escape from the containment. Here, we assessed the risk of HGT driven escape using the Pt-dependent cyanobacterium Synechococcus elongatus PCC 7942. Transformation experiments revealed that the Pt-dependent strain could regain phosphate transporter genes from the S. elongatus PCC 7942 wild-type genome and from the genome of the closely related strain, S. elongatus UTEX 2973. Transformed S. elongatus PCC 7942 became viable in a phosphate-containing medium. Meanwhile, transformation of the Synechocystis sp. PCC 6803 genome or environmental DNA did not yield escape strains, suggesting that only genetic material derived from phylogenetically-close species confer high risk to generate escape. Eliminating a single gene necessary for natural competence from the Pt-dependent strain reduced the escape occurrence rate. These results demonstrate that natural competence could be a potential risk to destabilize Pt-dependence, and therefore inhibiting exogenous DNA uptake would be effective for enhancing the robustness of the gene disruption-dependent biocontainment.


Asunto(s)
Transferencia de Gen Horizontal , Synechococcus , Ecosistema , Synechococcus/metabolismo , Fosfatos/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo
3.
ACS Synth Biol ; 7(9): 2189-2198, 2018 09 21.
Artículo en Inglés | MEDLINE | ID: mdl-30203964

RESUMEN

Recent progress in genetic engineering and synthetic biology have greatly expanded the production capabilities of cyanobacteria, but concerns regarding biosafety issues and the risk of contamination of cultures in outdoor culture conditions remain to be resolved. With this dual goal in mind, we applied the recently established biological containment strategy based on phosphite (H3PO3, Pt) dependency to the model cyanobacterium Synechococcus elongatus PCC 7942 ( Syn 7942). Pt assimilation capability was conferred on Syn 7942 by the introduction of Pt dehydrogenase (PtxD) and hypophosphite transporter (HtxBCDE) genes that allow the uptake of Pt, but not phosphate (H3PO4, Pi). We then identified and disrupted the two indigenous Pi transporters, pst (Synpcc7942_2441 to 2445) and pit (Synpcc7942_0184). The resultant strain failed to grow on any media containing various types of P compounds other than Pt. The strain did not yield any escape mutants for at least 28 days with a detection limit of 3.6 × 10-11 per colony forming unit, and rapidly lost viability in the absence of Pt. Moreover, growth competition of the Pt-dependent strain with wild-type cyanobacteria revealed that the Pt-dependent strain could dominate in cultures containing Pt as the sole P source. Because Pt is rarely available in aquatic environments this strategy can contribute to both biosafety and contamination management of genetically engineered cyanobacteria.


Asunto(s)
Biodegradación Ambiental , Fósforo/metabolismo , Synechococcus/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Ingeniería Metabólica/métodos , NADH NADPH Oxidorreductasas/genética , NADH NADPH Oxidorreductasas/metabolismo , Fosfitos/metabolismo , Plásmidos/genética , Plásmidos/metabolismo , Señales de Clasificación de Proteína/genética , Synechococcus/genética
4.
Genes Cells ; 23(10): 904-914, 2018 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-30144248

RESUMEN

In bacteria, a polymer of inorganic phosphate (Pi) (inorganic polyphosphate; polyP) is enzymatically produced and consumed as an alternative phosphate donor for adenosine triphosphate (ATP) production to protect against nutrient starvation. In vertebrates, polyP has been dismissed as a "molecular fossil" due to the lack of any known physiological function. Here, we have explored its possible role by producing transgenic (TG) mice widely expressing Saccharomyces cerevisiae exopolyphosphatase 1 (ScPPX1), which catalyzes hydrolytic polyP degradation. TG mice were produced and displayed reduced mitochondrial respiration in muscles. In female TG mice, the blood concentration of lactic acid was enhanced, whereas ATP storage in liver and brain tissues was reduced significantly. Thus, we suggested that the elongation of polyP reduces the intracellular Pi concentration, suppresses anaerobic lactic acid production, and sustains mitochondrial respiration. Our results provide an insight into the physiological role of polyP in mammals, particularly in females.


Asunto(s)
Ácido Anhídrido Hidrolasas/metabolismo , Ácido Láctico/metabolismo , Fosfatos/metabolismo , Adenosina Trifosfato/metabolismo , Animales , Respiración de la Célula/fisiología , Escherichia coli/metabolismo , Fermentación , Ácido Láctico/análisis , Ácido Láctico/sangre , Ratones , Ratones Transgénicos , Mitocondrias/metabolismo , Oocitos/metabolismo , Polímeros , Polifosfatos/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo
5.
Sci Rep ; 7: 44748, 2017 03 20.
Artículo en Inglés | MEDLINE | ID: mdl-28317852

RESUMEN

There is a growing demand to develop biocontainment strategies that prevent unintended proliferation of genetically modified organisms in the open environment. We found that the hypophosphite (H3PO2, HPt) transporter HtxBCDE from Pseudomonas stutzeri WM88 was also capable of transporting phosphite (H3PO3, Pt) but not phosphate (H3PO4, Pi), suggesting the potential for engineering a Pt/HPt-dependent bacterial strain as a biocontainment strategy. We disrupted all Pi and organic Pi transporters in an Escherichia coli strain expressing HtxABCDE and a Pt dehydrogenase, leaving Pt/HPt uptake and oxidation as the only means to obtain Pi. Challenge on non-permissive growth medium revealed that no escape mutants appeared for at least 21 days with a detection limit of 1.94 × 10-13 per colony forming unit. This represents, to the best of our knowledge, the lowest escape frequency among reported strategies. Since Pt/HPt are ecologically rare and not available in amounts sufficient for the growth of the Pt/HPt-dependent bacteria, this strategy offers a reliable and practical method for biocontainment.


Asunto(s)
Escherichia coli/crecimiento & desarrollo , Viabilidad Microbiana , Fosfitos/toxicidad , Proteínas Bacterianas/metabolismo , Biodegradación Ambiental/efectos de los fármacos , Transporte Biológico/efectos de los fármacos , Escherichia coli/efectos de los fármacos , Ingeniería Metabólica , Viabilidad Microbiana/efectos de los fármacos , Mutación/genética , Fosfatos/metabolismo
6.
J Biosci Bioeng ; 122(5): 633-638, 2016 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-27212265

RESUMEN

We recently reported that the spore coat protein, CotB1 (171 amino acids), from Bacillus cereus mediates silica biomineralization and that the polycationic C-terminal sequence of CotB1 (14 amino acids), designated CotB1p, serves as a silica-binding tag when fused to other proteins. Here, we reduced the length of this silica-binding tag to only seven amino acids (SB7 tag: RQSSRGR) while retaining its affinity for silica. Alanine scanning mutagenesis indicated that the three arginine residues in the SB7 tag play important roles in binding to a silica surface. Monomeric l-arginine, at concentrations of 0.3-0.5 M, was found to serve as a competitive eluent to release bound SB7-tagged proteins from silica surfaces. To develop a low-cost, silica-based affinity purification procedure, we used natural volcanic ash particles with a silica content of ∼70%, rather than pure synthetic silica particles, as an adsorbent for SB7-tagged proteins. Using green fluorescent protein, mCherry, and mKate2 as model proteins, our purification method achieved 75-90% recovery with ∼90% purity. These values are comparable to or even higher than that of the commonly used His-tag affinity purification. In addition to low cost, another advantage of our method is the use of l-arginine as the eluent because its protein-stabilizing effect would help minimize alteration of the intrinsic properties of the purified proteins. Our approach paves the way for the use of naturally occurring materials as adsorbents for simple, low-cost affinity purification.


Asunto(s)
Cromatografía de Afinidad/métodos , Proteínas Fluorescentes Verdes/aislamiento & purificación , Proteínas Recombinantes de Fusión/aislamiento & purificación , Dióxido de Silicio/química , Erupciones Volcánicas , Arginina/metabolismo , Bacillus cereus/metabolismo , Cromatografía de Afinidad/instrumentación , Escherichia coli/metabolismo , Proteínas Fluorescentes Verdes/metabolismo , Nanopartículas/química , Proteínas Recombinantes de Fusión/metabolismo , Dióxido de Silicio/metabolismo
7.
J Bacteriol ; 198(2): 276-82, 2016 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-26503850

RESUMEN

UNLABELLED: Silica is deposited in and around the spore coat layer of Bacillus cereus, and enhances the spore's acid resistance. Several peptides and proteins, including diatom silaffin and silacidin peptides, are involved in eukaryotic silica biomineralization (biosilicification). Homologous sequence search revealed a silacidin-like sequence in the C-terminal region of CotB1, a spore coat protein of B. cereus. The negatively charged silacidin-like sequence is followed by a positively charged arginine-rich sequence of 14 amino acids, which is remarkably similar to the silaffins. These sequences impart a zwitterionic character to the C terminus of CotB1. Interestingly, the cotB1 gene appears to form a bicistronic operon with its paralog, cotB2, the product of which, however, lacks the C-terminal zwitterionic sequence. A ΔcotB1B2 mutant strain grew as fast and formed spores at the same rate as wild-type bacteria but did not show biosilicification. Complementation analysis showed that CotB1, but neither CotB2 nor C-terminally truncated mutants of CotB1, could restore the biosilicification activity in the ΔcotB1B2 mutant, suggesting that the C-terminal zwitterionic sequence of CotB1 is essential for the process. We found that the kinetics of CotB1 expression, as well as its localization, correlated well with the time course of biosilicification and the location of the deposited silica. To our knowledge, this is the first report of a protein directly involved in prokaryotic biosilicification. IMPORTANCE: Biosilicification is the process by which organisms incorporate soluble silicate in the form of insoluble silica. Although the mechanisms underlying eukaryotic biosilicification have been intensively investigated, prokaryotic biosilicification was not studied until recently. We previously demonstrated that biosilicification occurs in Bacillus cereus and its close relatives, and that silica is deposited in and around a spore coat layer as a protective coating against acid. The present study reveals that a B. cereus spore coat protein, CotB1, which carried a C-terminal zwitterionic sequence, is essential for biosilicification. Our results provide the first insight into mechanisms required for biosilicification in prokaryotes.


Asunto(s)
Proteínas Bacterianas/metabolismo , Regulación Bacteriana de la Expresión Génica/fisiología , Dióxido de Silicio/metabolismo , Esporas Bacterianas/fisiología , Secuencia de Aminoácidos , Bacillus cereus , Proteínas Bacterianas/genética , Datos de Secuencia Molecular , Mutación
8.
J Biotechnol ; 182-183: 68-73, 2014 Jul 20.
Artículo en Inglés | MEDLINE | ID: mdl-24786825

RESUMEN

The use of antibiotic resistance markers in the commercial application of genetically modified microorganisms is limited due to restrictions on the release of antibiotics and their resistance genes to the environment. To avoid contamination by other microorganisms, the development of a dominant selection marker with low environmental risks is still needed. Here we demonstrated a new selection system for Schizosaccharomyces pombe and Saccharomyces cerevisiae using a bacterial phosphite dehydrogenase gene (ptxD). A Sz. pombe transformant carrying ptxD under a strong promoter or on a multicopy plasmid grew on a minimal medium containing phosphite (Pt) as a sole source of phosphorus. To adapt this system to S. cerevisiae strains, codon optimization of ptxD was necessary. The codon-optimized ptxD system appeared effective in not only laboratorial but also industrial S. cerevisiae strains that are diploid or polyploid. Since Pt is a safe and inexpensive chemical, ptxD could be used as a novel dominant selection marker applicable on an industrial scale.


Asunto(s)
Proteínas Bacterianas/genética , Clonación Molecular/métodos , NADH NADPH Oxidorreductasas/genética , Saccharomyces cerevisiae/genética , Schizosaccharomyces/genética , Proteínas Bacterianas/metabolismo , Microbiología Industrial , NADH NADPH Oxidorreductasas/metabolismo , Saccharomyces cerevisiae/metabolismo , Schizosaccharomyces/metabolismo
9.
Appl Microbiol Biotechnol ; 98(12): 5677-84, 2014 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-24756322

RESUMEN

We recently reported that silica is deposited on the coat of Bacillus cereus spores as a layer of nanometer-sized particles (Hirota et al. 2010 J Bacteriol 192: 111-116). Gene disruption analysis revealed that the spore coat protein CotB1 mediates the accumulation of silica (our unpublished results). Here, we report that B. cereus CotB1 (171 amino acids [aa]) and its C-terminal 14-aa region (corresponding to residues 158-171, designated CotB1p) show strong affinity for silica particles, with dissociation constants at pH 8.0 of 2.09 and 1.24 nM, respectively. Using CotB1 and CotB1p as silica-binding tags, we developed a silica-based affinity purification method in which silica particles are used as an adsorbent for CotB1/CotB1p fusion proteins. Small ubiquitin-like modifier (SUMO) technology was employed to release the target proteins from the adsorbed fusion proteins. SUMO-protease-mediated site-specific cleavage at the C-terminus of the fused SUMO sequence released the tagless target proteins into the liquid phase while leaving the tag region still bound to the solid phase. Using the fluorescent protein mCherry as a model, our purification method achieved 85 % recovery, with a purity of 95 % and yields of 0.60 ± 0.06 and 1.13 ± 0.13 mg per 10-mL bacterial culture for the CotB1-SUMO-mCherry and CotB1p-SUMO-mCherry fusions, respectively. CotB1p, a short 14-aa peptide, which demonstrates high affinity for silica, could be a promising fusion tag for both affinity purification and enzyme immobilization on silica supports.


Asunto(s)
Cromatografía de Afinidad/métodos , Proteínas Recombinantes de Fusión/aislamiento & purificación , Dióxido de Silicio/metabolismo , Adsorción , Bacillus cereus/genética , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Genes Reporteros , Proteínas Luminiscentes/genética , Proteínas Luminiscentes/metabolismo , Datos de Secuencia Molecular , Unión Proteica , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Análisis de Secuencia de ADN , Proteína Fluorescente Roja
10.
Appl Environ Microbiol ; 80(8): 2602-8, 2014 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-24532069

RESUMEN

Inorganic polyphosphate (polyP) is a linear polymer of tens to hundreds of phosphate (Pi) residues linked by "high-energy" phosphoanhydride bonds as in ATP. PolyP kinases, responsible for the synthesis and utilization of polyP, are divided into two families (PPK1 and PPK2) due to differences in amino acid sequence and kinetic properties. PPK2 catalyzes preferentially polyP-driven nucleotide phosphorylation (utilization of polyP), which is important for the survival of microbial cells under conditions of stress or pathogenesis. Phylogenetic analysis suggested that the PPK2 family could be divided into three subfamilies (classes I, II, and III). Class I and II PPK2s catalyze nucleoside diphosphate and nucleoside monophosphate phosphorylation, respectively. Here, we demonstrated that class III PPK2 catalyzes both nucleoside monophosphate and nucleoside diphosphate phosphorylation, thereby enabling us to synthesize ATP from AMP by a single enzyme. Moreover, class III PPK2 showed broad substrate specificity over purine and pyrimidine bases. This is the first demonstration that class III PPK2 possesses both class I and II activities.


Asunto(s)
Azúcares de Nucleósido Difosfato/metabolismo , Nucleótidos Cíclicos/metabolismo , Fosfotransferasas (Aceptor del Grupo Fosfato)/metabolismo , Bacterias/enzimología , Fosforilación , Fosfotransferasas (Aceptor del Grupo Fosfato)/aislamiento & purificación , Especificidad por Sustrato
11.
Biotechnol Lett ; 35(5): 695-701, 2013 May.
Artículo en Inglés | MEDLINE | ID: mdl-23288295

RESUMEN

phoU mutants of bacteria are potentially useful for the removal of inorganic phosphate (Pi) from sewage because they can accumulate a large amounts of polyphosphate (polyP). However, the growth of phoU mutants is severely defective and is easily outgrown by revertant(s) that have lost the ability to accumulate polyP during growth in a nutrient-rich medium. We found that a pseudo-revertant, designated LAP[+], that appeared in a culture of an Escherichia coli phoU mutant that could accumulate polyP even after ten serial passages. Reduction in the expression of the Pi-specific transporter Pst in LAP[+] may contribute to relieving stresses such as excess Pi incorporation that could stimulate reversions. The discovery of a LAP[+] provides a clue to generate phoU mutants that accumulate polyP in a stable manner.


Asunto(s)
Proteínas de Escherichia coli/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Transporte de Membrana/metabolismo , Polifosfatos/metabolismo , Factores de Transcripción/metabolismo , Proteínas de Escherichia coli/análisis , Proteínas de Escherichia coli/genética , Proteínas de Transporte de Membrana/análisis , Proteínas de Transporte de Membrana/genética , Mutación , Proteínas de Unión Periplasmáticas/análisis , Proteínas de Unión Periplasmáticas/genética , Proteínas de Unión Periplasmáticas/metabolismo , Proteínas de Unión a Fosfato/análisis , Proteínas de Unión a Fosfato/genética , Proteínas de Unión a Fosfato/metabolismo , Polifosfatos/análisis , ARN Mensajero/análisis , ARN Mensajero/genética , ARN Mensajero/metabolismo , Reacción en Cadena en Tiempo Real de la Polimerasa , Factores de Transcripción/análisis , Factores de Transcripción/genética
12.
J Biosci Bioeng ; 113(4): 445-50, 2012 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-22197497

RESUMEN

Phosphite dehydrogenase (PtxD), which catalyzes the nearly irreversible oxidation of phosphite to phosphate with the concomitant reduction of NAD(+) to NADH, has great potential for NADH regeneration in industrial biocatalysts. Here, we isolated a soil bacterium, Ralstonia sp. strain 4506, that grew at 45°C on a minimal medium containing phosphite as the sole source of phosphorus. A recombinant PtxD of Ralstonia sp. (PtxD(R4506)) appeared in the soluble fraction in Escherichia coli. The purified PtxD(R4506) showed 6.7-fold greater catalytic efficiency (V(max)/K(m)) than the first characterized PtxD of Pseudomonas stutzeri (PtxD(PS)). Moreover, the purified PtxD(R4506) showed maximum activity at 50°C, and its half-life of thermal inactivation at 45°C was 80.5h, which is approximately 3,450-fold greater than that of PtxD(PS). Therefore, we concluded that PtxD(R4506), which shows high catalytic efficiency, solubility, and thermostability, would be useful for NADH regeneration applications.


Asunto(s)
NADH NADPH Oxidorreductasas/genética , NADH NADPH Oxidorreductasas/metabolismo , Ralstonia/enzimología , Ralstonia/genética , Temperatura , Secuencia de Aminoácidos , Catálisis , Activación Enzimática/efectos de los fármacos , Inhibidores Enzimáticos/farmacología , Escherichia coli/genética , Escherichia coli/metabolismo , Expresión Génica , Semivida , Cinética , Datos de Secuencia Molecular , Mutación , NAD/metabolismo , NADH NADPH Oxidorreductasas/química , NADH NADPH Oxidorreductasas/aislamiento & purificación , Oxidación-Reducción , Filogenia , ARN Ribosómico 16S/genética , Ralstonia/clasificación , Proteínas Recombinantes/metabolismo , Alineación de Secuencia
13.
FEMS Microbiol Lett ; 320(1): 25-32, 2011 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-21488939

RESUMEN

Intracellular phosphate (P(i) ) is normally maintained at a fairly constant concentration in Escherichia coli, mainly by P(i) transport systems and by the 'phosphate balance' between P(i) and polyphosphate (polyP). We have reported previously that excess uptake of P(i) in a phoU mutant results in elevated levels of polyP. Here, we found that the elevated levels of polyP in the mutant could be reduced by the overproduction of YjbB, whose N-terminal half contains Na(+) /P(i) cotransporter domains. The rate of P(i) export increased when the YjbB overproducer grew on a medium containing glycerol-3-phosphate. These results strongly suggested that YjbB reduced the elevated levels of polyP in the phoU mutant by exporting intracellular excess P(i) .


Asunto(s)
Acetiltransferasas/genética , Acetiltransferasas/metabolismo , Regulación hacia Abajo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , Expresión Génica , Fosfatos/metabolismo , Polifosfatos/metabolismo , Transporte Biológico , Escherichia coli/enzimología , Escherichia coli/genética
14.
Protein Expr Purif ; 77(2): 173-7, 2011 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-21277372

RESUMEN

We recently reported a one-step affinity purification method using a silica-binding protein, designated Si-tag, as a fusion partner and silica particles as the specific adsorbents (Ikeda et al., Protein Expr. Purif. 71 [2010] 91-95) [13]. In this study, we demonstrate that the Si-tag also binds to the silica surface even under denaturing conditions, thereby facilitating affinity purification of recombinant proteins from inclusion bodies. A fusion protein of the Si-tag and a biotin acceptor peptide (AviTag), which was expressed as inclusion bodies in Escherichia coli, was used as a model protein. To simplify our purification method, we disrupted recombinant E. coli cells by sonication in the presence of 8M urea with concomitant solubilization of the inclusion bodies. The fusion protein was recovered with a purity of 90 ± 3% and yield of 92 ± 6% from the cleared cell lysate. We also discuss the binding mechanism of the Si-tag to a silica surface in the presence of high concentrations of denaturant. We propose that the intrinsic disorder of the polycationic Si-tag polypeptide plays an important role in its binding to the silica surface under denaturing conditions.


Asunto(s)
Proteínas Bacterianas/metabolismo , Proteínas Portadoras/metabolismo , Cromatografía de Afinidad/métodos , Cuerpos de Inclusión/metabolismo , Proteínas Recombinantes de Fusión/metabolismo , Dióxido de Silicio/metabolismo , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Proteínas Bacterianas/aislamiento & purificación , Sitios de Unión , Proteínas Portadoras/química , Proteínas Portadoras/genética , Proteínas Portadoras/aislamiento & purificación , Clonación Molecular , Electroforesis en Gel de Poliacrilamida , Escherichia coli , Expresión Génica , Vectores Genéticos/genética , Vectores Genéticos/metabolismo , Cuerpos de Inclusión/genética , Tamaño de la Partícula , Poliaminas/metabolismo , Polielectrolitos , Unión Proteica , Desnaturalización Proteica , Proteínas Recombinantes de Fusión/química , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/aislamiento & purificación , Dióxido de Silicio/química , Solubilidad , Sonicación , Urea/metabolismo
15.
Appl Environ Microbiol ; 73(17): 5676-8, 2007 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-17616610

RESUMEN

Heat-treated Escherichia coli producing Thermus polyphosphate kinase regenerated ATP by using exogenous polyphosphate. This recombinant could be used as a platform to produce valuable compounds in combination with thermostable phosphorylating or energy-requiring enzymes. In this work, we demonstrated the production of fructose 1,6-diphosphate from fructose and polyphosphate.


Asunto(s)
Adenosina Trifosfato/biosíntesis , Biotecnología/métodos , Escherichia coli/enzimología , Fructosadifosfatos/biosíntesis , Calor , Fosfotransferasas (Aceptor del Grupo Fosfato)/metabolismo , Proteínas Recombinantes/metabolismo , Estabilidad de Enzimas , Escherichia coli/genética , Fructosa/metabolismo , Fosfotransferasas (Aceptor del Grupo Fosfato)/genética , Polifosfatos/metabolismo , Proteínas Recombinantes/genética , Thermus thermophilus/enzimología , Thermus thermophilus/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA