RESUMEN
Adolescent exposure to chronic stress, a risk factor for mood disorders in adulthood, sensitizes the neuroinflammatory response to a subsequent immune challenge. We previously showed that chronic adolescent stress (CAS) in rats led to distinct patterns of neuroimmune priming in adult male and female rats. However, sex differences in the neuroimmune consequences of CAS and their underlying mechanisms are not fully understood. Here we hypothesized that biological sex would dictate differential induction of inflammation-related transcriptomic pathways and immune cell involvement (microglia activation and leukocyte presence) in the hippocampus of male and female rats with a history of CAS. Adolescent rats underwent CAS (six restraint and six social defeat episodes during postnatal days 38-49), and behavioral assessments were conducted in adolescence and adulthood. Neuroimmune measures were obtained following vehicle or a systemic lipopolysaccharide (LPS) challenge in adulthood. CAS led to increased time in the corners of the open field in adolescence. In males, CAS also increased social avoidance. As adults, CAS rats displayed an exaggerated enrichment of the nuclear factor kappa-light-chain-enhancer of activated B cells (NFκB) pathway and chemokine induction following LPS challenge, and increased number of perivascular CD45+ cells in the hippocampus. However, CAS females, but not males, showed exaggerated glucocorticoid receptor (GR) pathway enrichment and increased microglial complexity. These results provide further insight to the mechanisms by which peripheral immune events may influence neuroimmune responses differentially among males and females and further demonstrate the importance of adolescent stress in shaping adult responses.
Asunto(s)
Microglía , Transcriptoma , Animales , Femenino , Hipocampo , Masculino , Fenotipo , Ratas , Caracteres Sexuales , Estrés PsicológicoRESUMEN
Neuroinflammation is implicated in contributing to a variety of neurologic and somatic illnesses including Alzheimer's disease (AD), Parkinson's disease (PD), and depression. In this chapter, we focus on the role of neuroinflammation in mediating these three illnesses and portray interactions between the immune response and the central nervous system in the context of sex differences in disease progression. The majority of this chapter is supported by clinical findings; however, we occasionally utilize preclinical models where human studies are currently lacking. We begin by detailing the pathology of neuroinflammation, distinguishing between acute and chronic inflammation, and examining contributions from the innate and adaptive immune systems. Next, we summarize potential mechanisms of immune cell mediators including interleukin-1 beta (IL-1ß), tumor necrosis factor α, and IL-6 in AD, PD, and depression development. Given the strong sex bias seen in these illnesses, we additionally examine the role of sex hormones, e.g., estrogen and testosterone in mediating neuroinflammation at the cellular level. Systematically, we detail how sex hormones may contribute to distinct behavioral and clinical symptoms and prognosis between males and females with AD, PD, or depression. Finally, we highlight the possible role of exercise in alleviating neuroinflammation, as well as evidence that antiinflammatory drug therapies improve cognitive symptoms observed in brain-related diseases.
Asunto(s)
Enfermedad de Alzheimer , Enfermedad de Parkinson , Ejercicio Físico , Femenino , Humanos , Sistema Inmunológico , Inflamación , MasculinoRESUMEN
The extant literature supports the role of stress in enhancing the susceptibility of drug abuse progressing to a substance use disorder diagnosis. However, the molecular mediators by which stress enhances the progression from cocaine abuse to cocaine use disorder via the mesolimbic pathway remain elusive. In this mini-review article, we highlight three mechanisms by which glucocorticoids (GCs) and the dopaminergic system interact. First, GCs upregulate tyrosine hydroxylase (TH), the rate-limiting enzyme in dopamine (DA) synthesis. Second, GCs downregulate monoamine-oxidase (MAO), an enzyme responsible for DA removal. Lastly, GCs are hypothesized to decrease DA reuptake, subsequently increasing synaptic DA. Based on these interactions, we review preclinical literature highlighting how stress modulates the mesolimbic pathway, including the ventral tegmental area (VTA) and nucleus accumbens (NAcs), to alter cocaine abuse-related effects. Taken together, stress enhances cocaine's abuse-related effects at multiple points along the VTA mesolimbic projection, and uniquely in the NAcs through a positive feedback type mechanism. Furthermore, we highlight future directions to elucidate the interaction between the prefrontal cortex (PFC) and key intermediaries including ΔFosB, cAMP response element binding protein (CREB) and cyclin-dependent kinase 5 (CDK5) to highlight possible mechanisms that underlie stress-induced acceleration of the progression to a cocaine use disorder diagnosis.