Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Base de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Microorganisms ; 12(4)2024 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-38674716

RESUMEN

Antibiotic resistance has emerged as a significant global public health issue, driven by the rapid adaptation of microorganisms to commonly prescribed antibiotics. Colistin, previously regarded as a last-resort antibiotic for treating infections caused by Gram-negative bacteria, is increasingly becoming resistant due to chromosomal mutations and the acquisition of resistance genes carried by plasmids, particularly the mcr genes. The mobile colistin resistance gene (mcr-1) was first discovered in E. coli from China in 2016. Since that time, studies have reported different variants of mcr genes ranging from mcr-1 to mcr-10, mainly in Enterobacteriaceae from various parts of the world, which is a major concern for public health. The co-presence of colistin-resistant genes with other antibiotic resistance determinants further complicates treatment strategies and underscores the urgent need for enhanced surveillance and antimicrobial stewardship efforts. Therefore, understanding the mechanisms driving colistin resistance and monitoring its global prevalence are essential steps in addressing the growing threat of antimicrobial resistance and preserving the efficacy of existing antibiotics. This review underscores the critical role of colistin as a last-choice antibiotic, elucidates the mechanisms of colistin resistance and the dissemination of resistant genes, explores the global prevalence of mcr genes, and evaluates the current detection methods for colistin-resistant bacteria. The objective is to shed light on these key aspects with strategies for combating the growing threat of resistance to antibiotics.

2.
Future Microbiol ; 19: 195-211, 2024 02.
Artículo en Inglés | MEDLINE | ID: mdl-38126934

RESUMEN

Aim: In order to search for novel antibacterial therapeutics against Gram-negative bacteria, the antibacterial efficacies and mechanism of action of tryptophan- and arginine-rich α-melanocyte-stimulating hormone analogs were investigated. Materials & methods: We performed a killing assay to determine their efficacy; fluorescence, microscopic studies were used to understand their mechanism and peptide-lipopolysaccharide interaction. A checkerboard assay was used to find the effective combination of peptide and antibiotics. Results: Ana-peptides displayed good killing activity against Escherichia coli, Klebsiella pneumoniae and Pseudomonas aeruginosa. Their strong interaction with lipopolysaccharide damaged the bacterial membranes and led to their subsequent death. Ana-5, the highest cationic and hydrophobic analog, emerged as the most potent peptide, showing synergistic action with rifampicin and erythromycin. Conclusion: Ana-5 can be presented as an important therapeutic candidate against bacterial infections.


Bacteria can cause infections. These infections are becoming harder to treat, because excessive use of antibiotics can cause these bacteria to become less susceptible to medicine. In hospitals, these bacteria can cause infections in the lungs, urinary tract, blood, or on the skin. Our bodies make small molecules called antimicrobial peptides (AMPs) to fight against bacteria. AMPs can weaken or quickly destroy bacteria by attaching to their surfaces and breaking them down. Our laboratory has made an AMP called Ana-5. Using Ana-5 with regular medicine is better at killing bacteria. Ana-5 is not only good at fighting these bacteria, but may also help to prevent future infections.


Asunto(s)
Lipopolisacáridos , Triptófano , Triptófano/farmacología , alfa-MSH/farmacología , Arginina/farmacología , Antibacterianos/farmacología , Antibacterianos/química , Bacterias Gramnegativas , Escherichia coli , Pruebas de Sensibilidad Microbiana
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA