Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 79
Filtrar
Más filtros

Tipo del documento
Intervalo de año de publicación
2.
Plant Sci ; 338: 111897, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37852415

RESUMEN

Due to anthropogenic global warming, droughts are expected to increase and water availability to decrease in the coming decades. For this reason, research is increasingly focused on developing plant varieties and crop cultivars with reduced water consumption. Transpiration occurs through stomatal pores, resulting in water loss. Potassium plays a significant role in stomatal regulation. KAT1 is an inward-rectifying potassium channel that contributes to stomatal opening. Using a yeast high-throughput screening of an Arabidopsis cDNA library, MEE31 was found to physically interact with KAT1. MEE31 was initially identified in a screen for mutants with delayed embryonic development. The gene encodes a conserved phosphomannose isomerase (PMI). We report here that MEE31 interacts with and increases KAT1 activity in yeast and this interaction was also confirmed in plants. In addition, MEE31 complements the function of the yeast homologue, whereas the truncated version recovered in the screening does not, thus uncoupling the enzymatic activity from KAT1 regulation. We show that MEE31 overexpression leads to increased stomatal opening in Arabidopsis transgenic lines. Our data suggest that MEE31 is a moonlighting protein involved in both GDP-D-mannose biosynthesis and KAT1 regulation.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Manosa-6-Fosfato Isomerasa , Canales de Potasio de Rectificación Interna , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Manosa/metabolismo , Proteínas de Plantas/metabolismo , Canales de Potasio de Rectificación Interna/genética , Canales de Potasio de Rectificación Interna/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Agua/metabolismo , Manosa-6-Fosfato Isomerasa/metabolismo
3.
Int J Mol Sci ; 24(23)2023 Nov 26.
Artículo en Inglés | MEDLINE | ID: mdl-38069097

RESUMEN

Plants, the cornerstone of life on Earth, are constantly struggling with a number of challenges arising from both biotic and abiotic stressors. To overcome these adverse factors, plants have evolved complex defense mechanisms involving both a number of cell signaling pathways and a complex network of interactions with microorganisms. Among these interactions, the relationship between symbiotic arbuscular mycorrhizal fungi (AMF) and strigolactones (SLs) stands as an important interplay that has a significant impact on increased resistance to environmental stresses and improved nutrient uptake and the subsequent enhanced plant growth. AMF establishes mutualistic partnerships with plants by colonizing root systems, and offers a range of benefits, such as increased nutrient absorption, improved water uptake and increased resistance to both biotic and abiotic stresses. SLs play a fundamental role in shaping root architecture, promoting the growth of lateral roots and regulating plant defense responses. AMF can promote the production and release of SLs by plants, which in turn promote symbiotic interactions due to their role as signaling molecules with the ability to attract beneficial microbes. The complete knowledge of this synergy has the potential to develop applications to optimize agricultural practices, improve nutrient use efficiency and ultimately increase crop yields. This review explores the roles played by AMF and SLs in plant development and stress tolerance, highlighting their individual contributions and the synergistic nature of their interaction.


Asunto(s)
Micorrizas , Micorrizas/fisiología , Hongos/metabolismo , Simbiosis , Lactonas/metabolismo , Compuestos Heterocíclicos con 3 Anillos/metabolismo , Plantas/metabolismo , Raíces de Plantas/metabolismo
5.
Int J Mol Sci ; 24(15)2023 Jul 28.
Artículo en Inglés | MEDLINE | ID: mdl-37569516

RESUMEN

Potassium humate is a widely used biostimulant known for its ability to enhance growth and improve tolerance to abiotic stress. However, the molecular mechanisms explaining its effects remain poorly understood. In this study, we investigated the mechanism of action of potassium humate using the model plant Arabidopsis thaliana. We demonstrated that a formulation of potassium humate effectively increased the fresh weight accumulation of Arabidopsis plants under normal conditions, salt stress (sodium or lithium chloride), and particularly under osmotic stress (mannitol). Interestingly, plants treated with potassium humate exhibited a reduced antioxidant response and lower proline accumulation, while maintaining photosynthetic activity under stress conditions. The observed sodium and osmotic tolerance induced by humate was not accompanied by increased potassium accumulation. Additionally, metabolomic analysis revealed that potassium humate increased maltose levels under control conditions but decreased levels of fructose. However, under stress, both maltose and glucose levels decreased, suggesting changes in starch utilization and an increase in glycolysis. Starch concentration measurements in leaves showed that plants treated with potassium humate accumulated less starch under control conditions, while under stress, they accumulated starch to levels similar to or higher than control plants. Taken together, our findings suggest that the molecular mechanism underlying the abiotic stress tolerance conferred by potassium humate involves its ability to alter starch content under normal growth conditions and under salt or osmotic stress.


Asunto(s)
Arabidopsis , Arabidopsis/genética , Potasio/metabolismo , Almidón , Maltosa/farmacología , Estrés Fisiológico , Sodio/metabolismo , Plantas Modificadas Genéticamente/metabolismo , Regulación de la Expresión Génica de las Plantas
6.
J Exp Bot ; 74(19): 5989-6005, 2023 Oct 13.
Artículo en Inglés | MEDLINE | ID: mdl-37611215

RESUMEN

Potassium is the major cation responsible for the maintenance of the ionic environment in plant cells. Stable potassium homeostasis is indispensable for virtually all cellular functions, and, concomitantly, viability. Plants must cope with environmental changes such as salt or drought that can alter ionic homeostasis. Potassium fluxes are required to regulate the essential process of transpiration, so a constraint on potassium transport may also affect the plant's response to heat, cold, or oxidative stress. Sequencing data and functional analyses have defined the potassium channels and transporters present in the genomes of different species, so we know most of the proteins directly participating in potassium homeostasis. The still unanswered questions are how these proteins are regulated and the nature of potential cross-talk with other signaling pathways controlling growth, development, and stress responses. As we gain knowledge regarding the molecular mechanisms underlying regulation of potassium homeostasis in plants, we can take advantage of this information to increase the efficiency of potassium transport and generate plants with enhanced tolerance to abiotic stress through genetic engineering or new breeding techniques. Here, we review current knowledge of how modifying genes related to potassium homeostasis in plants affect abiotic stress tolerance at the whole plant level.

7.
Plants (Basel) ; 12(2)2023 Jan 06.
Artículo en Inglés | MEDLINE | ID: mdl-36678987

RESUMEN

Climate change is increasing drought and salinity in many cultivated areas, therefore threatening food production. There is a great demand for novel agricultural inputs able to maintain yield under the conditions imposed by the anthropogenic global warming. Biostimulants have been proposed as a useful tool to achieve this objective. We have investigated the biostimulant effect of different yucca (Yucca schidigera) extracts on plant growth at different stages of development under different abiotic stress conditions. The extracts were tested in the model plant Arabidopsis thaliana, and in three different crops; tomato (Solanum lycopersicum var microtom), broccoli (Brassica oleracea var. italica) and lettuce (Lactuca sativa var romana). We have found that the investigated extracts are able to promote germination and early vigor under drought/osmotic and salt stress induced either by sodium chloride or lithium chloride. This effect is particularly strong in Arabidopsis thaliana and in the Brassicaceae broccoli. We have also determined using antibiograms against the model yeast Saccharomyces cerevisiae that the evaluated extracts may be used also as a natural fungicide. The results in this report show that yucca extracts may be used to enhance early vigor in some crops and as a natural fungicide, providing a new and useful tool for farmers.

8.
Foods ; 12(2)2023 Jan 11.
Artículo en Inglés | MEDLINE | ID: mdl-36673431

RESUMEN

Broccoli (Brassica oleracea L. var. Italica Plenck) is a cruciferous crop that is considered to be a good source of micronutrients. Better taste is a main objective for breeding, as consumers are demanding novel cultivars suited for a healthy diet, but ones that are more palatable. This study aimed to identify primary metabolites related to cultivars with better taste according to a consumer panel. For this purpose, we performed a complete primary metabolomic profile of 20 different broccoli cultivars grown in the field and contrasted the obtained data with the results of a consumer panel which evaluated the taste of the same raw buds. A statistical analysis was conducted to find primary metabolites correlating with better score in the taste panels. According to our results, sugar content is not a distinctive factor for taste in broccoli. The accumulation of the amino acids leucine, lysine and alanine, together with Myo-inositol, negatively affected taste, while a high content of γ-aminobutyric acid (GABA) is a distinctive trait for cultivars scoring high in the consumer panels. A Principal Component Analysis (PCA) allowed us to define three different groups according to the metabolomic profile of the 20 broccoli cultivars studied. Our results suggest molecular traits that could be useful as distinctive markers to predict better taste in broccoli or to design novel biotechnological or classical breeding strategies for improving broccoli taste.

10.
Plant Methods ; 18(1): 111, 2022 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-36109758

RESUMEN

BACKGROUND: According to the most popular definition, a biostimulant is any substance or microorganism applied to plants with the aim to enhance nutrition efficiency, abiotic stress tolerance and/or crop quality traits, regardless of its nutrient content. Therefore, a biostimulant can help crops to withstand abiotic stress, while maintaining or even increasing productivity. We have previously designed a sequential system, based on two different model organisms, the baker's yeast Saccharomyces cerevisiae and the plant Arabidopsis thaliana, to evaluate the potential of different natural extracts as biostimulants employing a blind-test strategy. RESULTS: In this report, we further expand this concept to evaluate different biostimulants in a combinatorial approach to reveal the potential additive, synergistic or antagonistic effects of different combinations of biostimulants in order to design new formulations with enhanced effects on plant growth or tolerance to abiotic stress. The method is based on yeast assays (growth tests in solid medium, and continuous growth in liquid cultures) and plant assays (mass accumulation in hydroponic culture) to assess effects on early growth. CONCLUSIONS: With this novel approach, we have designed new formulations and quantified the ability to enhance growth and promote biomass accumulation under normal conditions and in the presence of abiotic stresses, such as drought, salinity or cold. This method enables a fast screen of many different products in a combinatorial manner, in order to design novel formulations of natural extracts with biostimulant potential.

12.
Front Plant Sci ; 12: 777060, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34804107

RESUMEN

Melon (Cucumis melo L.) is a crop with important agronomic interest worldwide. Because of the increase of drought and salinity in many cultivation areas as a result of anthropogenic global warming, the obtention of varieties tolerant to these conditions is a major objective for agronomical improvement. The identification of the limiting factors for stress tolerance could help to define the objectives and the traits which could be improved by classical breeding or other techniques. With this objective, we have characterized, at the physiological and biochemical levels, two different cultivars (sensitive or tolerant) of two different melon varieties (Galia and Piel de Sapo) under controlled drought or salt stress. We have performed physiological measurements, a complete amino acid profile and we have determined the sodium, potassium and hormone concentrations. This has allowed us to determine that the distinctive general trait for salt tolerance in melon are the levels of phenylalanine, histidine, proline and the Na+/K+ ratio, while the distinctive traits for drought tolerance are the hydric potential, isoleucine, glycine, phenylalanine, tryptophan, serine, and asparagine. These could be useful markers for breeding strategies or to predict which varieties are likely perform better under drought or salt stress. Our study has also allowed us to identify which metabolites and physiological traits are differentially regulated upon salt and drought stress between different varieties.

13.
BMC Plant Biol ; 21(1): 488, 2021 Oct 25.
Artículo en Inglés | MEDLINE | ID: mdl-34696731

RESUMEN

BACKGROUND: Salt stress is one of the main constraints determining crop productivity, and therefore one of the main limitations for food production. The aim of this study was to characterize the salt stress response at the physiological and molecular level of different Broccoli (Brassica oleracea L. var. Italica Plenck) cultivars that were previously characterized in field and greenhouse trials as salt sensitive or salt tolerant. This study aimed to identify functional and molecular traits capable of predicting the ability of uncharacterized lines to cope with salt stress. For this purpose, this study measured different physiological parameters, hormones and metabolites under control and salt stress conditions. RESULTS: This study found significant differences among cultivars for stomatal conductance, transpiration, methionine, proline, threonine, abscisic acid, jasmonic acid and indolacetic acid. Salt tolerant cultivars were shown to accumulate less sodium and potassium in leaves and have a lower sodium to potassium ratio under salt stress. Analysis of primary metabolites indicated that salt tolerant cultivars have higher concentrations of several intermediates of the Krebs cycle and the substrates of some anaplerotic reactions. CONCLUSIONS: This study has found that the energetic status of the plant, the sodium extrusion and the proline content are the limiting factors for broccoli tolerance to salt stress. Our results establish physiological and molecular traits useful as distinctive markers to predict salt tolerance in Broccoli or to design novel biotechnological or breeding strategies for improving broccoli tolerance to salt stress.


Asunto(s)
Brassica/genética , Brassica/fisiología , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Estrés Salino/genética , Estrés Salino/fisiología , Plantas Tolerantes a la Sal/genética , Plantas Tolerantes a la Sal/fisiología , Productos Agrícolas/genética , Productos Agrícolas/fisiología , Genes de Plantas , Variación Genética , Genotipo , Prolina/metabolismo , Cloruro de Sodio/metabolismo
14.
J Agric Food Chem ; 69(35): 10394-10404, 2021 Sep 08.
Artículo en Inglés | MEDLINE | ID: mdl-34445860

RESUMEN

Broccoli is a cruciferous crop rich in health-promoting metabolites. Due to several factors, including anthropogenic global warming, aridity is increasing in many cultivation areas. There is a great demand to characterize the drought response of broccoli and use this knowledge to develop new cultivars able to maintain yield under water constraints. The aim of this study is to characterize the drought response at the physiological and molecular level of different broccoli (Brassica oleracea L. var. Italica Plenck) cultivars, previously characterized as drought-sensitive or drought-tolerant. This approach aims to identify different traits, which can constitute limiting factors for drought stress tolerance in broccoli. For this purpose, we have compared several physiological parameters and the complete profiles of amino acids, primary metabolites, hormones, and ions of drought-tolerant and drought-sensitive cultivars under stress and control conditions. We have found that drought-tolerant cultivars presented higher levels of methionine and abscisic acid and lower amounts of urea, quinic acid, and the gluconic acid lactone. Interestingly, we have also found that a drought treatment increases the levels of most essential amino acids in leaves and in florets. Our results have established physiological and molecular traits useful as distinctive markers to predict drought tolerance in broccoli or which could be reliably used for breeding new cultivars adapted to water scarcity. We have also found that a drought treatment increases the content of essential amino acids in broccoli.


Asunto(s)
Brassica , Ácido Abscísico , Brassica/genética , Sequías , Fitomejoramiento , Hojas de la Planta
15.
Front Microbiol ; 12: 708354, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34349749

RESUMEN

Plasma membrane and membranous organelles contribute to the physiology of the Eukaryotic cell by participating in vesicle trafficking and the maintenance of ion homeostasis. Exomer is a protein complex that facilitates vesicle transport from the trans-Golgi network to the plasma membrane, and its absence leads to the retention of a set of selected cargoes in this organelle. However, this retention does not explain all phenotypes observed in exomer mutants. The Schizosaccharomyces pombe exomer is composed of Cfr1 and Bch1, and cfr1Δ and bch1Δ were sensitive to high concentrations of potassium salts but not sorbitol, which showed sensitivity to ionic but not osmotic stress. Additionally, the activity of the plasma membrane ATPase was higher in exomer mutants than in the wild-type, pointing to membrane hyperpolarization, which caused an increase in intracellular K+ content and mild sensitivity to Na+, Ca2+, and the aminoglycoside antibiotic hygromycin B. Moreover, in response to K+ shock, the intracellular Ca2+ level of cfr1Δ cells increased significantly more than in the wild-type, likely due to the larger Ca2+ spikes in the mutant. Microscopy analyses showed a defective endosomal morphology in the mutants. This was accompanied by an increase in the intracellular pools of the K+ exporting P-type ATPase Cta3 and the plasma membrane Transient Receptor Potential (TRP)-like Ca2+ channel Pkd2, which were partially diverted from the trans-Golgi network to the prevacuolar endosome. Despite this, most Cta3 and Pkd2 were delivered to the plasma membrane at the cell growing sites, showing that their transport from the trans-Golgi network to the cell surface occurred in the absence of exomer. Nevertheless, shortly after gene expression in the presence of KCl, the polarized distribution of Cta3 and Pkd2 in the plasma membrane was disturbed in the mutants. Finally, the use of fluorescent probes suggested that the distribution and dynamics of association of some lipids to the plasma membrane in the presence of KCl were altered in the mutants. Thus, exomer participation in the response to K+ stress was multifaceted. These results supported the notion that exomer plays a general role in protein sorting at the trans-Golgi network and in polarized secretion, which is not always related to a function as a selective cargo adaptor.

16.
FASEB J ; 35(6): e21615, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33978245

RESUMEN

Protein sorting at the trans-Golgi network (TGN) usually requires the assistance of cargo adaptors. However, it remains to be examined how the same complex can mediate both the export and retention of different proteins or how sorting complexes interact among themselves. In Saccharomyces cerevisiae, the exomer complex is involved in the polarized transport of some proteins from the TGN to the plasma membrane (PM). Intriguingly, exomer and its cargos also show a sort of functional relationship with TGN clathrin adaptors that is still unsolved. Here, using a wide range of techniques, including time-lapse and BIFC microscopy, we describe new molecular implications of the exomer complex in protein sorting and address its different layers of functional interaction with clathrin adaptor complexes. Exomer mutants show impaired amino acid uptake because it facilitates not only the polarized delivery of amino acid permeases to the PM but also participates in their endosomal traffic. We propose a model for exomer where it modulates the recruitment of TGN clathrin adaptors directly or indirectly through the Arf1 function. Moreover, we describe an in vivo competitive relationship between the exomer and AP-1 complexes for the model cargo Chs3. These results highlight a broad role for exomer in regulating protein sorting at the TGN that is complementary to its role as cargo adaptor and present a model to understand the complexity of TGN protein sorting.


Asunto(s)
Factor 1 de Ribosilacion-ADP/metabolismo , Proteínas Adaptadoras del Transporte Vesicular/metabolismo , Quitina Sintasa/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Red trans-Golgi/metabolismo , Membrana Celular/metabolismo , Endosomas/metabolismo , Transporte de Proteínas , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/crecimiento & desarrollo
17.
Int J Mol Sci ; 22(2)2021 Jan 19.
Artículo en Inglés | MEDLINE | ID: mdl-33478095

RESUMEN

The α7 nicotinic acetylcholine receptor (α7 nAChR) is a ligand-gated ion channel that is involved in cognition disorders, schizophrenia, pain, and inflammation. Allosteric modulation of this receptor might be advantageous to reduce the toxicity in comparison with full agonists. Our previous results obtained with some hydroxy-chalcones, which were identified as positive allosteric modulators (PAMs) of α7 nAChR, prompted us to evaluate the potential of some structurally related naturally occurring flavonoids and curcuminoids and some synthetic curcumin analogues, with the aim of identifying new allosteric modulators of the α7 nAChR. Biological evaluation showed that phloretin, demethoxycurcumin, and bis-demethoxicurcuming behave as PAMs of α7 nAChR. In addition, some new curcumin derivatives were able to enhance the signal evoked by ACh; the activity values found for the tetrahydrocurcuminoid analog 23 were especially promising.


Asunto(s)
Diarilheptanoides/farmacología , Flavonoides/farmacología , Receptor Nicotínico de Acetilcolina alfa 7/agonistas , Regulación Alostérica/efectos de los fármacos , Animales , Productos Biológicos/farmacología , Curcumina/análogos & derivados , Curcumina/síntesis química , Curcumina/farmacología , Diarilheptanoides/química , Relación Dosis-Respuesta a Droga , Fenómenos Electrofisiológicos/efectos de los fármacos , Potenciales Evocados/efectos de los fármacos , Femenino , Xenopus laevis
19.
Plant Physiol ; 181(3): 1277-1294, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-31451552

RESUMEN

Potassium (K+) is a key monovalent cation necessary for multiple aspects of cell growth and survival. In plants, this cation also plays a key role in the control of stomatal movement. KAT1 and its homolog KAT2 are the main inward rectifying channels present in guard cells, mediating K+ influx into these cells, resulting in stomatal opening. To gain further insight into the regulation of these channels, we performed a split-ubiquitin protein-protein interaction screen searching for KAT1 interactors in Arabidopsis (Arabidopsis thaliana). We characterized one of these candidates, BCL2-ASSOCIATED ATHANOGENE4 (BAG4), in detail using biochemical and genetic approaches to confirm this interaction and its effect on KAT1 activity. We show that BAG4 improves KAT1-mediated K+ transport in two heterologous systems and provide evidence that in plants, BAG4 interacts with KAT1 and favors the arrival of KAT1 at the plasma membrane. Importantly, lines lacking or overexpressing the BAG4 gene show altered KAT1 plasma membrane accumulation and alterations in stomatal movement. Our data allowed us to identify a KAT1 regulator and define a potential target for the plant BAG family. The identification of physiologically relevant regulators of K+ channels will aid in the design of approaches that may impact drought tolerance and pathogen susceptibility.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Arabidopsis/fisiología , Estomas de Plantas/metabolismo , Canales de Potasio de Rectificación Interna/metabolismo , Proteínas Adaptadoras Transductoras de Señales/genética , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Membrana Celular/metabolismo , Técnicas de Placa-Clamp , Estomas de Plantas/fisiología , Potasio/metabolismo , Canales de Potasio de Rectificación Interna/genética , Canales de Potasio con Entrada de Voltaje/genética , Canales de Potasio con Entrada de Voltaje/metabolismo
20.
Int J Mol Sci ; 20(9)2019 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-31052176

RESUMEN

Sodium and potassium are two alkali cations abundant in the biosphere. Potassium is essential for plants and its concentration must be maintained at approximately 150 mM in the plant cell cytoplasm including under circumstances where its concentration is much lower in soil. On the other hand, sodium must be extruded from the plant or accumulated either in the vacuole or in specific plant structures. Maintaining a high intracellular K+/Na+ ratio under adverse environmental conditions or in the presence of salt is essential to maintain cellular homeostasis and to avoid toxicity. The baker's yeast, Saccharomyces cerevisiae, has been used to identify and characterize participants in potassium and sodium homeostasis in plants for many years. Its utility resides in the fact that the electric gradient across the membrane and the vacuoles is similar to plants. Most plant proteins can be expressed in yeast and are functional in this unicellular model system, which allows for productive structure-function studies for ion transporting proteins. Moreover, yeast can also be used as a high-throughput platform for the identification of genes that confer stress tolerance and for the study of protein-protein interactions. In this review, we summarize advances regarding potassium and sodium transport that have been discovered using the yeast model system, the state-of-the-art of the available techniques and the future directions and opportunities in this field.


Asunto(s)
Proteínas de Transporte de Catión/metabolismo , Proteínas de Plantas/metabolismo , Canales de Potasio/metabolismo , Saccharomyces cerevisiae/genética , Canales de Sodio/metabolismo , Técnicas del Sistema de Dos Híbridos , Proteínas de Transporte de Catión/genética , Proteínas de Plantas/genética , Canales de Potasio/genética , Saccharomyces cerevisiae/metabolismo , Canales de Sodio/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA