Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros

Base de datos
Tipo de estudio
Tipo del documento
Intervalo de año de publicación
1.
Sci Rep ; 13(1): 14485, 2023 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-37660180

RESUMEN

We have used the LOw-Frequency ARray (LOFAR) to search for the growing tip of an intra-cloud (IC) positive leader. Even with our most sensitive beamforming method, where we coherently add the signals of about 170 antenna pairs, we were not able to detect any emission from the tip. Instead, we put constraints on the emissivity of very-high frequency (VHF) radiation from the tip at 0.5 pJ/MHz at 60 MHz, integrated over 100 ns. The limit is independent on whether this emission is in the form of short pulses or continuously radiating. The non-observation of VHF radiation from intra-cloud positive leaders implies that they proceed in an extremely gradual process, which is in sharp contrast with the observations of other parts of a lightning discharge.

2.
Earth Space Sci ; 9(4): e2021EA001958, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-35865721

RESUMEN

When a lightning flash is propagating in the atmosphere it is known that especially the negative leaders emit a large number of very high frequency (VHF) radio pulses. It is thought that this is due to streamer activity at the tip of the growing negative leader. In this work, we have investigated the dependence of the strength of this VHF emission on the altitude of such emission for two lightning flashes as observed by the Low Frequency ARray (LOFAR) radio telescope. We find for these two flashes that the extracted amplitude distributions are consistent with a power-law, and that the amplitude of the radio emissions decreases very strongly with source altitude, by more than a factor of 2 from 1 km altitude up to 5 km altitude. In addition, we do not find any dependence on the extracted power-law with altitude, and that the extracted power-law slope has an average around 3, for both flashes.

3.
Sci Rep ; 11(1): 16256, 2021 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-34376724

RESUMEN

The common phenomenon of lightning still harbors many secrets such as what are the conditions for lightning initiation and what is driving the discharge to propagate over several tens of kilometers through the atmosphere forming conducting ionized channels called leaders. Since lightning is an electric discharge phenomenon, there are positively and negatively charged leaders. In this work we report on measurements made with the LOFAR radio telescope, an instrument primarily build for radio-astronomy observations. It is observed that a negative leader rather suddenly changes, for a few milliseconds, into a mode where it radiates 100 times more VHF power than typical negative leaders after which it spawns a large number of more typical negative leaders. This mode occurs during the initial stage, soon after initiation, of all lightning flashes we have mapped (about 25). For some flashes this mode occurs also well after initiation and we show one case where it is triggered twice, some 100 ms apart. We postulate that this is indicative of a small (order of 5 km[Formula: see text]) high charge pocket. Lightning thus appears to be initiated exclusively in the vicinity of such a small but dense charge pocket.

4.
Earth Space Sci ; 8(7): e2020EA001523, 2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-34435079

RESUMEN

Since their introduction 22 years ago, lightning mapping arrays (LMA) have played a central role in the investigation of lightning physics. Even in recent years with the proliferation of digital interferometers and the introduction of the LOw Frequency ARray (LOFAR) radio telescope, LMAs still play an important role in lightning science. LMA networks use a simple windowing technique that records the highest pulse in either 80 µs or 10 µs fixed windows in order to apply a time-of-arrival location technique. In this work, we develop an LMA-emulator that uses lightning data recorded by LOFAR to simulate an LMA, and we use it to test three new styles of pulse windowing. We show that they produce very similar results as the more traditional LMA windowing, implying that LMA lightning mapping results are relatively independent of windowing technique. In addition, each LMA station has its GPS-conditioned clock. While the timing accuracy of GPS receivers has improved significantly over the years, they still significantly limit the timing measurements of the LMA. Recently, new time-of-arrival techniques have been introduced that can be used to self-calibrate systematic offsets between different receiving stations. Applying this calibration technique to a set of data with 32 ns uncertainty, observed by the Colorado LMA, improves the timing uncertainty to 19 ns. This technique is not limited to LMAs and could be used to help calibrate future multi-station lightning interferometers.

5.
J Geophys Res Atmos ; 125(8): e2019JD031433, 2020 Apr 27.
Artículo en Inglés | MEDLINE | ID: mdl-32714723

RESUMEN

An analysis is presented of electric fields in thunderclouds using a recently proposed method based on measuring radio emission from extensive air shower events during thunderstorm conditions. This method can be regarded as a tomography of thunderclouds using cosmic rays as probes. The data cover the period from December 2011 till August 2014. We have developed an improved fitting procedure to be able to analyze the data. Our measurements show evidence for the main negative-charge layer near the -10° isotherm. This we have seen for a winter as well as for a summer cloud where multiple events pass through the same cloud and also the vertical component of the electric field could be reconstructed. On the day of measurement of some cosmic-ray events showing evidence for strong fields, no lightning activity was detected within 100 km distance. For the winter events, the top heights were between 5 and 6 km, while in the summer, typical top heights of 9 km were seen. Large horizontal components in excess of 70 kV/m of the electric fields are observed in the middle and top layers.

6.
Phys Rev Lett ; 124(10): 105101, 2020 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-32216418

RESUMEN

We use the Low Frequency Array (LOFAR) to probe the dynamics of the stepping process of negatively charged plasma channels (negative leaders) in a lightning discharge. We observe that at each step of a leader, multiple pulses of vhf (30-80 MHz) radiation are emitted in short-duration bursts (<10 µs). This is evidence for streamer formation during corona flashes that occur with each leader step, which has not been observed before in natural lightning and it could help explain x-ray emission from lightning leaders, as x rays from laboratory leaders tend to be associated with corona flashes. Surprisingly, we find that the stepping length is very similar to what was observed near the ground, however with a stepping time that is considerably larger, which as yet is not understood. These results will help to improve lightning propagation models, and eventually lightning protection models.

7.
Nature ; 568(7752): 360-363, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30996312

RESUMEN

Lightning is a dangerous yet poorly understood natural phenomenon. Lightning forms a network of plasma channels propagating away from the initiation point with both positively and negatively charged ends-called positive and negative leaders1. Negative leaders propagate in discrete steps, emitting copious radio pulses in the 30-300-megahertz frequency band2-8 that can be remotely sensed and imaged with high spatial and temporal resolution9-11. Positive leaders propagate more continuously and thus emit very little high-frequency radiation12. Radio emission from positive leaders has nevertheless been mapped13-15, and exhibits a pattern that is different from that of negative leaders11-13,16,17. Furthermore, it has been inferred that positive leaders can become transiently disconnected from negative leaders9,12,16,18-20, which may lead to current pulses that both reconnect positive leaders to negative leaders11,16,17,20-22 and cause multiple cloud-to-ground lightning events1. The disconnection process is thought to be due to negative differential resistance18, but this does not explain why the disconnections form primarily on positive leaders22, or why the current in cloud-to-ground lightning never goes to zero23. Indeed, it is still not understood how positive leaders emit radio-frequency radiation or why they behave differently from negative leaders. Here we report three-dimensional radio interferometric observations of lightning over the Netherlands with unprecedented spatiotemporal resolution. We find small plasma structures-which we call 'needles'-that are the dominant source of radio emission from the positive leaders. These structures appear to drain charge from the leader, and are probably the reason why positive leaders disconnect from negative ones, and why cloud-to-ground lightning connects to the ground multiple times.

8.
Phys Rev Lett ; 121(16): 161102, 2018 Oct 19.
Artículo en Inglés | MEDLINE | ID: mdl-30387639

RESUMEN

We report on an upward traveling, radio-detected cosmic-ray-like impulsive event with characteristics closely matching an extensive air shower. This event, observed in the third flight of the Antarctic Impulsive Transient Antenna (ANITA), a NASA-sponsored long-duration balloon payload, is consistent with a similar event reported in a previous flight. These events could be produced by the atmospheric decay of an upward-propagating τ lepton produced by a ν_{τ} interaction, although their relatively steep arrival angles create tension with the standard model neutrino cross section. Each of the two events have a posteriori background estimates of ≲10^{-2} events. If these are generated by τ-lepton decay, then either the charged-current ν_{τ} cross section is suppressed at EeV energies, or the events arise at moments when the peak flux of a transient neutrino source was much larger than the typical expected cosmogenic background neutrinos.

9.
J Geophys Res Atmos ; 123(5): 2861-2876, 2018 Mar 16.
Artículo en Inglés | MEDLINE | ID: mdl-29938144

RESUMEN

Lightning mapping technology has proven instrumental in understanding lightning. In this work we present a pipeline that can use lightning observed by the LOw-Frequency ARray (LOFAR) radio telescope to construct a 3-D map of the flash. We show that LOFAR has unparalleled precision, on the order of meters, even for lightning flashes that are over 20 km outside the area enclosed by LOFAR antennas (∼3,200 km2), and can potentially locate over 10,000 sources per lightning flash. We also show that LOFAR is the first lightning mapping system that is sensitive to the spatial structure of the electrical current during individual lightning leader steps.

10.
Phys Rev Lett ; 117(7): 071101, 2016 Aug 12.
Artículo en Inglés | MEDLINE | ID: mdl-27563945

RESUMEN

We report on four radio-detected cosmic-ray (CR) or CR-like events observed with the Antarctic Impulsive Transient Antenna (ANITA), a NASA-sponsored long-duration balloon payload. Two of the four were previously identified as stratospheric CR air showers during the ANITA-I flight. A third stratospheric CR was detected during the ANITA-II flight. Here, we report on characteristics of these three unusual CR events, which develop nearly horizontally, 20-30 km above the surface of Earth. In addition, we report on a fourth steeply upward-pointing ANITA-I CR-like radio event which has characteristics consistent with a primary that emerged from the surface of the ice. This suggests a possible τ-lepton decay as the origin of this event, but such an interpretation would require significant suppression of the standard model τ-neutrino cross section.

11.
Phys Rev Lett ; 116(14): 141103, 2016 04 08.
Artículo en Inglés | MEDLINE | ID: mdl-27104694

RESUMEN

For 50 years, cosmic-ray air showers have been detected by their radio emission. We present the first laboratory measurements that validate electrodynamics simulations used in air shower modeling. An experiment at SLAC provides a beam test of radio-frequency (rf) radiation from charged particle cascades in the presence of a magnetic field, a model system of a cosmic-ray air shower. This experiment provides a suite of controlled laboratory measurements to compare to particle-level simulations of rf emission, which are relied upon in ultrahigh-energy cosmic-ray air shower detection. We compare simulations to data for intensity, linearity with magnetic field, angular distribution, polarization, and spectral content. In particular, we confirm modern predictions that the magnetically induced emission in a dielectric forms a cone that peaks at the Cherenkov angle and show that the simulations reproduce the data within systematic uncertainties.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA