Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 128
Filtrar
Más filtros

Base de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Front Endocrinol (Lausanne) ; 15: 1425426, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39355613

RESUMEN

Rationale: MG53's known function in facilitating tissue repair and anti-inflammation has broad applications to regenerative medicine. There is controversy regarding MG53's role in the development of type 2 diabetes mellitus. Objective: This study aims to address this controversy - whether MG53's myokine function contributes to inhibition of insulin signaling in muscle, heart, and liver tissues. Study design: We determined the binding affinity of the recombinant human MG53 (rhMG53) to the insulin receptor extracellular domain (IR-ECD) and found low affinity of interaction with Kd (>480 nM). Using cultured C2C12 myotubes and HepG2 cells, we found no effect of rhMG53 on insulin-stimulated Akt phosphorylation (p-Akt). We performed in vivo assay with C57BL/6J mice subjected to insulin stimulation (1 U/kg, intraperitoneal injection) and observed no effect of rhMG53 on insulin-stimulated p-Akt in muscle, heart and liver tissues. Conclusion: Overall, our data suggest that rhMG53 can bind to the IR-ECD, however has a low likelihood of a physiologic role, as the Kd for binding is ~10,000 higher than the physiologic level of MG53 present in the serum of rodents and humans (~10 pM). Our findings question the notion proposed by Xiao and colleagues - whether targeting circulating MG53 opens a new therapeutic avenue for type 2 diabetes mellitus and its complications.


Asunto(s)
Insulina , Hígado , Ratones Endogámicos C57BL , Proteínas Proto-Oncogénicas c-akt , Receptor de Insulina , Animales , Humanos , Ratones , Fosforilación/efectos de los fármacos , Receptor de Insulina/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Hígado/metabolismo , Hígado/efectos de los fármacos , Insulina/metabolismo , Insulina/farmacología , Miocardio/metabolismo , Células Hep G2 , Músculo Esquelético/metabolismo , Músculo Esquelético/efectos de los fármacos , Masculino , Transducción de Señal/efectos de los fármacos , Diabetes Mellitus Tipo 2/metabolismo , Proteínas de Motivos Tripartitos/metabolismo , Citocinas/metabolismo , Proteínas de la Membrana
2.
Nat Commun ; 15(1): 9056, 2024 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-39428398

RESUMEN

The resistance of pests to common insecticides is a global issue that threatens food production worldwide. Diamide insecticides target insect ryanodine receptors (RyRs), causing uncontrolled calcium release from the sarcoplasmic and endoplasmic reticulum. Despite their high potency and species selectivity, several resistance mutations have emerged. Using a chimeric RyR (chiRyR) approach and cryo-electron microscopy (cryo-EM), we investigate how insect RyRs engage two different diamide insecticides from separate families: flubendiamide, a phthalic acid derivative, and tetraniliprole, an anthranilic compound. Both compounds target the same site in the transmembrane region of the RyR, albeit with different poses, and promote channel opening through coupling with the pore-forming domain. To explore the resistance mechanisms, we also solve two cryo-EM structures of chiRyR carrying the two most common resistance mutations, I4790M and G4946E, both alone and in complex with the diamide insecticide chlorantraniliprole. The resistance mutations perturb the local structure, directly reducing the binding affinity and altering the binding pose. Our findings elucidate the mode of action of different diamide insecticides, reveal the molecular mechanism of resistance mutations, and provide important clues for the development of novel pesticides that can bypass the resistance mutations.


Asunto(s)
Benzamidas , Microscopía por Crioelectrón , Diamida , Resistencia a los Insecticidas , Insecticidas , Mutación , Canal Liberador de Calcio Receptor de Rianodina , ortoaminobenzoatos , Canal Liberador de Calcio Receptor de Rianodina/metabolismo , Canal Liberador de Calcio Receptor de Rianodina/genética , Canal Liberador de Calcio Receptor de Rianodina/química , Canal Liberador de Calcio Receptor de Rianodina/ultraestructura , Insecticidas/farmacología , Animales , Resistencia a los Insecticidas/genética , Benzamidas/farmacología , ortoaminobenzoatos/farmacología , ortoaminobenzoatos/química , Diamida/farmacología , Sulfonas/farmacología , Proteínas de Insectos/genética , Proteínas de Insectos/metabolismo , Proteínas de Insectos/química , Modelos Moleculares , Fluorocarburos , Ftalimidas
3.
Commun Biol ; 7(1): 1108, 2024 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-39294299

RESUMEN

The type 1 ryanodine receptor (RyR1) is a Ca2+ release channel in the sarcoplasmic reticulum that is essential for skeletal muscle contraction. RyR1 forms a channel with six transmembrane segments, in which S5 is the fifth segment and is thought to contribute to pore formation. However, its role in channel gating remains unclear. Here, we performed a functional analysis of several disease-associated mutations in S5 and interpreted the results with respect to the published RyR1 structures to identify potential interactions associated with the mutant phenotypes. We demonstrate that S5 plays a dual role in channel gating: the cytoplasmic side interacts with S6 to reduce the channel activity, whereas the luminal side forms a rigid structural base necessary for S6 displacement in channel opening. These results deepen our understanding of the molecular mechanisms of RyR1 channel gating and provide insight into the divergent disease phenotypes caused by mutations in S5.


Asunto(s)
Activación del Canal Iónico , Mutación , Canal Liberador de Calcio Receptor de Rianodina , Canal Liberador de Calcio Receptor de Rianodina/metabolismo , Canal Liberador de Calcio Receptor de Rianodina/genética , Humanos , Células HEK293 , Animales , Calcio/metabolismo
4.
PLoS One ; 19(8): e0291887, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39173065

RESUMEN

Seizures are increasingly being recognized as the hallmark of Alzheimer's disease (AD). Neuronal hyperactivity can be a consequence of neuronal damage caused by abnormal amyloid ß (Aß) depositions. However, it can also be a cell-autonomous phenomenon causing AD by Aß-independent mechanisms. Various studies using animal models have shown that Ca2+ is released from the endoplasmic reticulum (ER) via type 1 inositol triphosphate receptors (InsP3R1s) and ryanodine receptors (RyRs). To investigate which is the main pathophysiological mechanism in human neurons, we measured Ca2+ signaling in neural cells derived from three early-onset AD patients harboring Presenilin-1 variants (PSEN1 p.A246E, p.L286V, and p.M146L). Of these, it has been reported that PSEN1 p.A246E and p.L286V did not produce a significant amount of abnormal Aß. We found all PSEN1-mutant neurons, but not wild-type, caused abnormal Ca2+-bursts in a manner dependent on the calcium channel, Ryanodine Receptor 2 (RyR2). Indeed, carvedilol, an RyR2 inhibitor, and VK-II-86, an analog of carvedilol without the ß-blocking effects, sufficiently eliminated the abnormal Ca2+ bursts. In contrast, Dantrolene, an inhibitor of RyR1 and RyR3, and Xestospongin c, an IP3R inhibitor, did not attenuate the Ca2+-bursts. The Western blotting showed that RyR2 expression was not affected by PSEN1 p.A246E, suggesting that the variant may activate the RyR2. The RNA-Seq data revealed that ER-stress responsive genes were increased, and mitochondrial Ca2+-transporter genes were decreased in PSEN1A246E cells compared to the WT neurons. Thus, we propose that aberrant Ca2+ signaling is a key link between human pathogenic PSEN1 variants and cell-intrinsic hyperactivity prior to deposition of abnormal Aß, offering prospects for the development of targeted prevention strategies for at-risk individuals.


Asunto(s)
Enfermedad de Alzheimer , Señalización del Calcio , Calcio , Carvedilol , Neuronas , Presenilina-1 , Canal Liberador de Calcio Receptor de Rianodina , Femenino , Humanos , Masculino , Enfermedad de Alzheimer/metabolismo , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/patología , Calcio/metabolismo , Señalización del Calcio/efectos de los fármacos , Retículo Endoplásmico/metabolismo , Retículo Endoplásmico/efectos de los fármacos , Neuronas/metabolismo , Neuronas/efectos de los fármacos , Presenilina-1/genética , Presenilina-1/metabolismo , Canal Liberador de Calcio Receptor de Rianodina/metabolismo , Canal Liberador de Calcio Receptor de Rianodina/genética , Carvedilol/farmacología
5.
Neurol Res ; 46(8): 781-786, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38873919

RESUMEN

OBJECTIVES: The association between the amount of physical activity and the brain structure in patients with stroke is unclear. Therefore, this study aimed to evaluate the structural characteristics of the brain in patients with chronic stroke engaging in varying levels of physical activity. METHODS: This study included 10 healthy participants and 10 patients with stroke. Structural images were obtained, and the physical activity of patients with stroke was measured using a triaxial accelerometer. Additionally, the brain structure was assessed using voxel-based morphometry for gray and white matter volumes. The analysis software used were Statistical Parametric Mapping 12 and MATLAB version R2020a. The differences in brain structure between healthy participants and stroke patients were investigated. The brain regions associated with the amount of physical activity were analyzed. RESULTS: There was a significant decrease in the gray matter volume of the contralesional cerebellum and ipsilesional thalamus in stroke patients when compared with healthy participants (p < 0.001, uncorrected). Patients with stroke showed a positive correlation between physical activity and the volume of the ipsilesional precentral gyrus and ipsilesional entorhinal area (p < 0.001, uncorrected). CONCLUSIONS: The amount of physical activity in patients with chronic hemiplegic stroke is associated with brain gray matter mass.


Asunto(s)
Encéfalo , Ejercicio Físico , Imagen por Resonancia Magnética , Accidente Cerebrovascular , Humanos , Masculino , Femenino , Persona de Mediana Edad , Accidente Cerebrovascular/fisiopatología , Accidente Cerebrovascular/patología , Accidente Cerebrovascular/diagnóstico por imagen , Encéfalo/patología , Encéfalo/diagnóstico por imagen , Encéfalo/fisiopatología , Ejercicio Físico/fisiología , Enfermedad Crónica , Anciano , Sustancia Gris/patología , Sustancia Gris/diagnóstico por imagen , Adulto
6.
Artículo en Inglés | MEDLINE | ID: mdl-38700016

RESUMEN

Myosin phosphatase targeting subunit1 (MYPT1) is a critical subunit of myosin phosphatase (MP), which brings PP1Cδ phosphatase and its substrate together. We previously showed that MYPT1 depletion resulted in oblique chromatid segregation. Therefore, we hypothesized that MYPT1 may control microtubule-dependent motor activity. Dynein, a minus-end microtubule motor, is known to be involved in mitotic spindle assembly. We thus examined whether MYPT1 and dynein may interact. Proximity ligation assay and co-immunoprecipitation revealed that MYPT1 and dynein intermediate chain (DIC) were associated. We found that DIC phosphorylation is increased in MYPT1-depleted cells in vivo, and that MP was able to dephosphorylate DIC in vitro. MYPT1 depletion also altered the localization and motility of Rab7-containing vesicles. MYPT1-depletion dispersed the perinuclear Rab7 localization to the peripheral in interphase cells. The dispersed Rab7 localization was rescued by microinjection of a constitutively active, truncated MYPT1 mutant, supporting that MP is responsible for the altered Rab7 localization. Analyses of Rab7 vesicle trafficking also revealed that minus-end transport was reduced in MYPT1-depleted cells. These results suggest an unexpected role of MP: MP controls dynein activity in both mitotic and interphase cells, possibly by dephosphorylating dynein subunits including DIC.

7.
Chem Pharm Bull (Tokyo) ; 72(4): 399-407, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38644198

RESUMEN

Ryanodine receptor 2 (RyR2) is a large Ca2+-release channel in the sarcoplasmic reticulum (SR) of cardiac muscle cells. It serves to release Ca2+ from the SR into the cytosol to initiate muscle contraction. RyR2 overactivation is associated with arrhythmogenic cardiac disease, but few specific inhibitors have been reported so far. Here, we identified an RyR2-selective inhibitor 1 from the chemical compound library and synthesized it from glycolic acid. Synthesis of various derivatives to investigate the structure-activity relationship of each substructure afforded another two RyR2-selective inhibitors 6 and 7, among which 6 was the most potent. Notably, compound 6 also inhibited Ca2+ release in cells expressing the RyR2 mutants R2474S, R4497C and K4750Q, which are associated with cardiac arrhythmias such as catecholaminergic polymorphic ventricular tachycardia (CPVT). This inhibitor is expected to be a useful tool for research on the structure and dynamics of RyR2, as well as a lead compound for the development of drug candidates to treat RyR2-related cardiac disease.


Asunto(s)
Bloqueadores de los Canales de Calcio , Canal Liberador de Calcio Receptor de Rianodina , Humanos , Calcio/metabolismo , Relación Dosis-Respuesta a Droga , Descubrimiento de Drogas , Células HEK293 , Estructura Molecular , Canal Liberador de Calcio Receptor de Rianodina/efectos de los fármacos , Canal Liberador de Calcio Receptor de Rianodina/genética , Canal Liberador de Calcio Receptor de Rianodina/metabolismo , Relación Estructura-Actividad , Bloqueadores de los Canales de Calcio/química , Bloqueadores de los Canales de Calcio/farmacología , Antiarrítmicos/química , Antiarrítmicos/farmacología , Taquicardia Ventricular/tratamiento farmacológico , Taquicardia Ventricular/genética
8.
Proc Natl Acad Sci U S A ; 121(17): e2218204121, 2024 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-38621141

RESUMEN

Inherited arrhythmia syndromes (IASs) can cause life-threatening arrhythmias and are responsible for a significant proportion of sudden cardiac deaths (SCDs). Despite progress in the development of devices to prevent SCDs, the precise molecular mechanisms that induce detrimental arrhythmias remain to be fully investigated, and more effective therapies are desirable. In the present study, we screened a large-scale randomly mutagenized mouse library by electrocardiography to establish a disease model of IASs and consequently found one pedigree that exhibited spontaneous ventricular arrhythmias (VAs) followed by SCD within 1 y after birth. Genetic analysis successfully revealed a missense mutation (p.I4093V) of the ryanodine receptor 2 gene to be a cause of the arrhythmia. We found an age-related increase in arrhythmia frequency accompanied by cardiomegaly and decreased ventricular contractility in the Ryr2I4093V/+ mice. Ca2+ signaling analysis and a ryanodine binding assay indicated that the mutant ryanodine receptor 2 had a gain-of-function phenotype and enhanced Ca2+ sensitivity. Using this model, we detected the significant suppression of VA following flecainide or dantrolene treatment. Collectively, we established an inherited life-threatening arrhythmia mouse model from an electrocardiogram-based screen of randomly mutagenized mice. The present IAS model may prove feasible for use in investigating the mechanisms of SCD and assessing therapies.


Asunto(s)
Taquicardia Ventricular , Ratones , Animales , Canal Liberador de Calcio Receptor de Rianodina/metabolismo , Arritmias Cardíacas/genética , Flecainida , Mutación Missense , Muerte Súbita Cardíaca , Mutación
9.
Eur J Med Chem ; 262: 115910, 2023 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-37922828

RESUMEN

Ryanodine receptor 2 (RyR2) is a Ca2+ release channel mainly located on the sarcoplasmic reticulum (SR) membrane of heart muscle cells and regulates the concentration of Ca2+ in the cytosol. RyR2 overactivation causes potentially lethal cardiac arrhythmias, but no specific inhibitor is yet available. Herein we developed the first highly potent and selective RyR2 inhibitor, TMDJ-035, containing 3,5-difluoro substituents on the A ring and a 4-fluoro substituent on the B ring, based on a comprehensive structure-activity relationship (SAR) study of tetrazole compound 1. The SAR study also showed that the amide conformation is critical for inhibitory potency. Single-crystal X-ray diffraction analysis and variable-temperature 1H NMR revealed that TMDJ-035 strongly favors cis-amide configuration, while the inactive analogue TMDJ-011 with a secondary amide takes trans-amide configuration. Examination of the selectivity among RyRs indicated that TMDJ-035 displayed high selectivity for RyR2. TMDJ-035 suppressed abnormal Ca2+ waves and transients in isolated cardiomyocytes from RyR2-mutated mice. It appears to be a promising candidate drug for treating cardiac arrhythmias due to RyR2 overactivation, as well as a tool for studying the mechanism and dynamics of RyR2 channel gating.


Asunto(s)
Amidas , Canal Liberador de Calcio Receptor de Rianodina , Ratones , Animales , Canal Liberador de Calcio Receptor de Rianodina/metabolismo , Amidas/farmacología , Amidas/metabolismo , Arritmias Cardíacas/tratamiento farmacológico , Miocitos Cardíacos/metabolismo , Retículo Sarcoplasmático/metabolismo , Calcio/metabolismo , Señalización del Calcio
10.
J Gen Physiol ; 155(11)2023 11 06.
Artículo en Inglés | MEDLINE | ID: mdl-37756589

RESUMEN

Trimeric intracellular cation channels (TRIC-A and TRIC-B) are thought to provide counter-ion currents to enable charge equilibration across the sarco/endoplasmic reticulum (SR) and nuclear membranes. However, there is also evidence that TRIC-A may interact directly with ryanodine receptor type 1 (RyR1) and 2 (RyR2) to alter RyR channel gating. It is therefore possible that the reverse is also true, where the presence of RyR channels is necessary for fully functional TRIC channels. We therefore coexpressed mouse TRIC-A or TRIC-B with mouse RyR2 in HEK293 cells to examine if after incorporating membrane vesicles from these cells into bilayers, the presence of TRIC affects RyR2 function, and to characterize the permeability and gating properties of the TRIC channels. Importantly, we used no purification techniques or detergents to minimize damage to TRIC and RyR2 proteins. We found that both TRIC-A and TRIC-B altered the gating behavior of RyR2 and its response to cytosolic Ca2+ but that TRIC-A exhibited a greater ability to stimulate the opening of RyR2. Fusing membrane vesicles containing TRIC-A or TRIC-B into bilayers caused the appearance of rapidly gating current fluctuations of multiple amplitudes. The reversal potentials of bilayers fused with high numbers of vesicles containing TRIC-A or TRIC-B revealed both Cl- and K+ fluxes, suggesting that TRIC channels are relatively non-selective ion channels. Our results indicate that the physiological roles of TRIC-A and TRIC-B may include direct, complementary regulation of RyR2 gating in addition to the provision of counter-ion currents of both cations and anions.


Asunto(s)
Retículo Endoplásmico , Canal Liberador de Calcio Receptor de Rianodina , Humanos , Animales , Ratones , Células HEK293 , Biofisica , Citosol , Canales Iónicos
11.
Mol Pharmacol ; 104(6): 275-286, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37678938

RESUMEN

Type 2 ryanodine receptor (RyR2) is a Ca2+ release channel on the endoplasmic (ER)/sarcoplasmic reticulum that plays a central role in the excitation-contraction coupling in the heart. Hyperactivity of RyR2 has been linked to ventricular arrhythmias in patients with catecholaminergic polymorphic ventricular tachycardia and heart failure, where spontaneous Ca2+ release via hyperactivated RyR2 depolarizes diastolic membrane potential to induce triggered activity. In such cases, drugs that suppress RyR2 activity are expected to prevent the arrhythmias, but there is no clinically available RyR2 inhibitors at present. In this study, we searched for RyR2 inhibitors from a well-characterized compound library using a recently developed ER Ca2+-based assay, where the inhibition of RyR2 activity was detected by the increase in ER Ca2+ signals from R-CEPIA1er, a genetically encoded ER Ca2+ indicator, in RyR2-expressing HEK293 cells. By screening 1535 compounds in the library, we identified three compounds (chloroxylenol, methyl orsellinate, and riluzole) that greatly increased the ER Ca2+ signal. All of the three compounds suppressed spontaneous Ca2+ oscillations in RyR2-expressing HEK293 cells and correspondingly reduced the Ca2+-dependent [3H]ryanodine binding activity. In cardiomyocytes from RyR2-mutant mice, the three compounds effectively suppressed abnormal Ca2+ waves without substantial effects on the action-potential-induced Ca2+ transients. These results confirm that ER Ca2+-based screening is useful for identifying modulators of ER Ca2+ release channels and suggest that RyR2 inhibitors have potential to be developed as a new category of antiarrhythmic drugs. SIGNIFICANCE STATEMENT: We successfully identified three compounds having RyR2 inhibitory action from a well-characterized compound library using an endoplasmic reticulum Ca2+-based assay, and demonstrated that these compounds suppressed arrhythmogenic Ca2+ wave generation without substantially affecting physiological action-potential induced Ca2+ transients in cardiomyocytes. This study will facilitate the development of RyR2-specific inhibitors as a potential new class of drugs for life-threatening arrhythmias induced by hyperactivation of RyR2.


Asunto(s)
Miocitos Cardíacos , Canal Liberador de Calcio Receptor de Rianodina , Humanos , Ratones , Animales , Canal Liberador de Calcio Receptor de Rianodina/metabolismo , Células HEK293 , Retículo Endoplásmico/metabolismo , Arritmias Cardíacas/metabolismo , Retículo Sarcoplasmático , Señalización del Calcio , Calcio/metabolismo , Mutación
12.
J Agric Food Chem ; 71(29): 11001-11007, 2023 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-37462137

RESUMEN

Ryanodine receptor (RyR) has been used as an insecticide target to control many destructive agricultural pests. The effectiveness of these insecticides has been limited by the spread of resistance mutations identified in pest RyRs, but the detailed molecular impacts of the individual mutations on the activity of different diamide compounds have not been fully explored. We created five HEK293 cell lines stably expressing wild type rabbit RyR1, wild type Spodoptera frugiperda RyR (Sf RyR), or Sf RyR carrying different resistance mutations, including G4891E, G4891E/I4734M, and Y4867F, respectively. R-CEPIA1er, a genetically encoded fluorescent protein, was also introduced in these cell lines to report the Ca2+ concentration in the endoplasmic reticulum. We systematically characterized the activities of six commercial diamide insecticides against different RyRs using the time-lapse fluorescence assay. Among them, cyantraniliprole (CYAN) displayed the highest activity against all three resistant Sf RyRs. The good performance of CYAN was confirmed by the toxicity assay using gene-edited Drosophila expressing the mutant RyRs, in which CYAN showed the lowest LD50 value for the double resistant mutant. In addition, we compared their acitivty between mammalian and insect RyRs and found that flubendiamide has the best insect-selectivity. The mechanism of the anti-resistance property and selectivity of the compounds was proposed based on the structural models generated by homology modeling and molecular docking. Our findings provide insights into the mechanism of insect resistance and guidance for developing effective RyR agonists that can selectively target resistant pests.


Asunto(s)
Insecticidas , Mariposas Nocturnas , Humanos , Animales , Conejos , Insecticidas/farmacología , Insecticidas/química , Canal Liberador de Calcio Receptor de Rianodina/metabolismo , Diamida/farmacología , Simulación del Acoplamiento Molecular , Células HEK293 , Resistencia a los Insecticidas/genética , Mariposas Nocturnas/genética , Mariposas Nocturnas/metabolismo , Mamíferos/metabolismo
13.
Int J Rehabil Res ; 46(2): 187-192, 2023 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-37039601

RESUMEN

Constraint-induced movement therapy (CIMT) for the lower extremities CIMT (LE-CIMT) has been shown feasible and promising but the long-term outcomes remain uncertain. In this pilot study, we recruited eight participants with chronic stroke from our facility for persons with disabilities to determine changes in gait and balance throughout an extended treatment program based on the principles of LE-CIMT. The program consisted of a run-in phase (3 weeks), LE-CIMT phase (3 weeks), and maintenance phase (6 months). In the LE-CIMT phase (3.5 h/day, 5 days/week, 3 weeks), the participants received task-oriented training (3 h) and transfer package training (30 min). The maintenance phase (30 min/day, 2-3 times/week, 6 months) included a transfer package and conventional training. The assessments were performed in the beginning and after each phase using the Fugl-Meyer Assessment, 6-min walk test (6MWT), Berg Balance Scale (BBS), and 10-m walk test from which walking speed, cadence, and stride length were derived. Overall, 6MWT, BBS, walking speed, and cadence improved significantly over time (analysis of variance P  < 0.001). When comparing the results from before to after the LE-CIMT phase, 6MWT, BBS, walking speed, and cadence improved significantly ( P  = 0.002 to 0.022). At the end of the 6-month maintenance phase, further improvements relative to the after LE-CIMT phase were found for 6MWT, walking speed, and cadence ( P  = 0.002 to 0.034). These pilot results suggest that an extended treatment program based on the principles of LE-CIMT can improve balance and more so walking in the chronic phase of stroke.


Asunto(s)
Rehabilitación de Accidente Cerebrovascular , Accidente Cerebrovascular , Humanos , Estudios de Seguimiento , Proyectos Piloto , Rehabilitación de Accidente Cerebrovascular/métodos , Marcha , Caminata , Extremidad Inferior , Daño Encefálico Crónico , Resultado del Tratamiento , Terapia por Ejercicio
14.
Circ Arrhythm Electrophysiol ; 16(3): e011387, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36866681

RESUMEN

BACKGROUND: CaM (calmodulin) is a ubiquitously expressed, multifunctional Ca2+ sensor protein that regulates numerous proteins. Recently, CaM missense variants have been identified in patients with malignant inherited arrhythmias, such as long QT syndrome and catecholaminergic polymorphic ventricular tachycardia (CPVT). However, the exact mechanism of CaM-related CPVT in human cardiomyocytes remains unclear. In this study, we sought to investigate the arrhythmogenic mechanism of CPVT caused by a novel variant using human induced pluripotent stem cell (iPSC) models and biochemical assays. METHODS: We generated iPSCs from a patient with CPVT bearing CALM2 p.E46K. As comparisons, we used 2 control lines including an isogenic line, and another iPSC line from a patient with long QT syndrome bearing CALM2 p.N98S (also reported in CPVT). Electrophysiological properties were investigated using iPSC-cardiomyocytes. We further examined the RyR2 (ryanodine receptor 2) and Ca2+ affinities of CaM using recombinant proteins. RESULTS: We identified a novel de novo heterozygous variant, CALM2 p.E46K, in 2 unrelated patients with CPVT accompanied by neurodevelopmental disorders. The E46K-cardiomyocytes exhibited more frequent abnormal electrical excitations and Ca2+ waves than the other lines in association with increased Ca2+ leakage from the sarcoplasmic reticulum via RyR2. Furthermore, the [3H]ryanodine binding assay revealed that E46K-CaM facilitated RyR2 function especially by activating at low [Ca2+] levels. The real-time CaM-RyR2 binding analysis demonstrated that E46K-CaM had a 10-fold increased RyR2 binding affinity compared with wild-type CaM which may account for the dominant effect of the mutant CaM. Additionally, the E46K-CaM did not affect CaM-Ca2+ binding or L-type calcium channel function. Finally, antiarrhythmic agents, nadolol and flecainide, suppressed abnormal Ca2+ waves in E46K-cardiomyocytes. CONCLUSIONS: We, for the first time, established a CaM-related CPVT iPSC-CM model which recapitulated severe arrhythmogenic features resulting from E46K-CaM dominantly binding and facilitating RyR2. In addition, the findings in iPSC-based drug testing will contribute to precision medicine.


Asunto(s)
Células Madre Pluripotentes Inducidas , Síndrome de QT Prolongado , Taquicardia Ventricular , Humanos , Calmodulina/genética , Calmodulina/metabolismo , Miocitos Cardíacos/metabolismo , Células Madre Pluripotentes Inducidas/metabolismo , Canal Liberador de Calcio Receptor de Rianodina/genética , Canal Liberador de Calcio Receptor de Rianodina/metabolismo , Taquicardia Ventricular/metabolismo , Arritmias Cardíacas , Síndrome de QT Prolongado/genética , Síndrome de QT Prolongado/metabolismo , Calcio/metabolismo , Mutación
15.
Curr Opin Pharmacol ; 69: 102356, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36842386

RESUMEN

Type 1 ryanodine receptor (RyR1) is an intracellular Ca2+ release channel on the sarcoplasmic reticulum of skeletal muscle, and it plays a central role in excitation-contraction (E-C) coupling. Mutations in RyR1 are implicated in various muscle diseases including malignant hyperthermia, central core disease, and myopathies. Currently, no specific treatment exists for most of these diseases. Recently, high-throughput screening (HTS) assays have been developed for identifying potential candidates for treating RyR-related muscle diseases. Currently, two different methods, namely a FRET-based assay and an endoplasmic reticulum Ca2+-based assay, are available. These assays identified several compounds as novel RyR1 inhibitors. In addition, the development of a reconstituted platform permitted HTS assays for E-C coupling modulators. In this review, we will focus on recent progress in HTS assays and discuss future perspectives of these promising approaches.


Asunto(s)
Enfermedades Musculares , Canal Liberador de Calcio Receptor de Rianodina , Humanos , Canal Liberador de Calcio Receptor de Rianodina/genética , Canal Liberador de Calcio Receptor de Rianodina/metabolismo , Enfermedades Musculares/metabolismo , Señalización del Calcio/genética , Músculo Esquelético/metabolismo , Desarrollo de Medicamentos , Calcio/metabolismo , Mutación
16.
Juntendo Iji Zasshi ; 69(3): 180-187, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38855953

RESUMEN

Ryanodine receptors (RyR) are intracellular calcium (Ca2+) release channels on the sarcoplasmic reticulum of skeletal and cardiac muscles that play a central role in excitation-contraction coupling. Genetic mutations or posttranslational modifications of RyR causes hyperactivation of the channel, leading to various skeletal muscle and heart diseases. Currently, no specific treatments exist for most RyR-associated diseases. Recently, high-throughput screening (HTS) assays have been developed to identify potential candidates for treating RyR-related muscle diseases. These assays have successfully identified several compounds as novel RyR inhibitors, which are effective in animal models. In this review, we will focus on recent progress in HTS assays and discuss future perspectives of these promising approaches.

17.
J Gen Physiol ; 154(12)2022 12 05.
Artículo en Inglés | MEDLINE | ID: mdl-36318155

RESUMEN

In skeletal muscle excitation-contraction (E-C) coupling, depolarization of the plasma membrane triggers Ca2+ release from the sarcoplasmic reticulum (SR), referred to as depolarization-induced Ca2+ release (DICR). DICR occurs through the type 1 ryanodine receptor (RyR1), which physically interacts with the dihydropyridine receptor Cav1.1 subunit in specific machinery formed with additional essential components including ß1a, Stac3 adaptor protein, and junctophilins. Exome sequencing has accelerated the discovery of many novel mutations in genes encoding DICR machinery in various skeletal muscle diseases. However, functional validation is time-consuming because it must be performed in a skeletal muscle environment. In this study, we established a platform of the reconstituted DICR in HEK293 cells. The essential components were effectively transduced into HEK293 cells expressing RyR1 using baculovirus vectors, and Ca2+ release was quantitatively measured with R-CEPIA1er, a fluorescent ER Ca2+ indicator, without contaminant of extracellular Ca2+ influx. In these cells, [K+]-dependent Ca2+ release was triggered by chemical depolarization with the aid of inward rectifying potassium channel, indicating a successful reconstitution of DICR. Using the platform, we evaluated several Cav1.1 mutations that are implicated in malignant hyperthermia and myopathy. We also tested several RyR1 inhibitors; whereas dantrolene and Cpd1 inhibited DICR, procaine had no effect. Furthermore, twitch potentiators such as perchlorate and thiocyanate shifted the voltage dependence of DICR to more negative potentials without affecting Ca2+-induced Ca2+ release. These results well reproduced the findings with the muscle fibers and the cultured myotubes. Since the procedure is simple and reproducible, the reconstituted DICR platform will be highly useful for the validation of mutations and drug discovery for skeletal muscle diseases.


Asunto(s)
Enfermedades Musculares , Canal Liberador de Calcio Receptor de Rianodina , Humanos , Canal Liberador de Calcio Receptor de Rianodina/metabolismo , Calcio/metabolismo , Células HEK293 , Retículo Sarcoplasmático/metabolismo , Fibras Musculares Esqueléticas/metabolismo , Canales de Calcio Tipo L/metabolismo , Enfermedades Musculares/metabolismo , Músculo Esquelético/metabolismo , Mutación , Descubrimiento de Drogas
18.
Bioorg Med Chem ; 74: 117027, 2022 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-36223685

RESUMEN

Ryanodine receptor 1 (RyR1) is a Ca2+-release channel expressed on the sarcoplasmic reticulum (SR) membrane. RyR1 mediates release of Ca2+ from the SR to the cytoplasm to induce muscle contraction, and mutations associated with overactivation of RyR1 cause lethal muscle diseases. Dantrolene sodium salt (dantrolene Na) is the only approved RyR inhibitor to treat malignant hyperthermia patients with RyR1 mutations, but is poorly water-soluble. Our group recently developed a bioassay system and used it to identify quinoline derivatives such as 1 as potent RyR1 inhibitors. In the present study, we focused on modification of these inhibitors with the aim of increasing their water-solubility. First, we tried reducing the hydrophobicity by shortening the N-octyl chain at the quinolone ring of 1; the N-heptyl compound retained RyR1-inhibitory activity, but the N-hexyl compound showed decreased activity. Next, we introduced a more hydrophilic azaquinolone ring in place of quinolone; in this case, only the N-octyl compound retained activity. The sodium salt of N-octyl azaquinolone 7 showed similar inhibitory activity to dantrolene Na with approximately 1,000-fold greater solubility in saline.


Asunto(s)
Quinolonas , Canal Liberador de Calcio Receptor de Rianodina , Humanos , Dantroleno/farmacología , Agua , Calcio/metabolismo , Músculo Esquelético/metabolismo , Quinolonas/farmacología
19.
J Gen Physiol ; 154(11)2022 11 07.
Artículo en Inglés | MEDLINE | ID: mdl-36200983

RESUMEN

Type 1 ryanodine receptor (RYR1) is a Ca2+ release channel in the sarcoplasmic reticulum (SR) of the skeletal muscle and plays a critical role in excitation-contraction coupling. Mutations in RYR1 cause severe muscle diseases, such as malignant hyperthermia, a disorder of Ca2+-induced Ca2+ release (CICR) through RYR1 from the SR. We recently reported that volatile anesthetics induce malignant hyperthermia (MH)-like episodes through enhanced CICR in heterozygous R2509C-RYR1 mice. However, the characterization of Ca2+ dynamics has yet to be investigated in skeletal muscle cells from homozygous mice because these animals die in utero. In the present study, we generated primary cultured skeletal myocytes from R2509C-RYR1 mice. No differences in cellular morphology were detected between wild type (WT) and mutant myocytes. Spontaneous Ca2+ transients and cellular contractions occurred in WT and heterozygous myocytes, but not in homozygous myocytes. Electron microscopic observation revealed that the sarcomere length was shortened to ∼1.7 µm in homozygous myocytes, as compared to ∼2.2 and ∼2.3 µm in WT and heterozygous myocytes, respectively. Consistently, the resting intracellular Ca2+ concentration was higher in homozygous myocytes than in WT or heterozygous myocytes, which may be coupled with a reduced Ca2+ concentration in the SR. Finally, using infrared laser-based microheating, we found that heterozygous myocytes showed larger heat-induced Ca2+ transients than WT myocytes. Our findings suggest that the R2509C mutation in RYR1 causes dysfunctional Ca2+ dynamics in a mutant-gene dose-dependent manner in the skeletal muscles, in turn provoking MH-like episodes and embryonic lethality in heterozygous and homozygous mice, respectively.


Asunto(s)
Hipertermia Maligna , Canal Liberador de Calcio Receptor de Rianodina/genética , Animales , Calcio/metabolismo , Hipertermia Maligna/genética , Ratones , Fibras Musculares Esqueléticas/metabolismo , Músculo Esquelético/metabolismo , Mutación
20.
Proc Natl Acad Sci U S A ; 119(32): e2201286119, 2022 08 09.
Artículo en Inglés | MEDLINE | ID: mdl-35925888

RESUMEN

Thermoregulation is an important aspect of human homeostasis, and high temperatures pose serious stresses for the body. Malignant hyperthermia (MH) is a life-threatening disorder in which body temperature can rise to a lethal level. Here we employ an optically controlled local heat-pulse method to manipulate the temperature in cells with a precision of less than 1 °C and find that the mutants of ryanodine receptor type 1 (RyR1), a key Ca2+ release channel underlying MH, are heat hypersensitive compared with the wild type (WT). We show that the local heat pulses induce an intracellular Ca2+ burst in human embryonic kidney 293 cells overexpressing WT RyR1 and some RyR1 mutants related to MH. Fluorescence Ca2+ imaging using the endoplasmic reticulum-targeted fluorescent probes demonstrates that the Ca2+ burst originates from heat-induced Ca2+ release (HICR) through RyR1-mutant channels because of the channels' heat hypersensitivity. Furthermore, the variation in the heat hypersensitivity of four RyR1 mutants highlights the complexity of MH. HICR likewise occurs in skeletal muscles of MH model mice. We propose that HICR contributes an additional positive feedback to accelerate thermogenesis in patients with MH.


Asunto(s)
Hipertermia Maligna , Canal Liberador de Calcio Receptor de Rianodina , Animales , Calcio/metabolismo , Células HEK293 , Calor , Humanos , Hipertermia Maligna/genética , Hipertermia Maligna/patología , Proteínas de la Membrana , Ratones , Músculo Esquelético/metabolismo , Mutación , Canal Liberador de Calcio Receptor de Rianodina/genética , Retículo Sarcoplasmático/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA