Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Base de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Microb Biotechnol ; 17(6): e14479, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38881500

RESUMEN

Carboxylic ester hydrolases with the capacity to degrade polyesters are currently highly sought after for their potential use in the biological degradation of PET and other chemically synthesized polymers. Here, we describe MarCE, a carboxylesterase family protein identified via genome mining of a Maribacter sp. isolate from the marine sponge Stelligera stuposa. Based on phylogenetic analysis, MarCE and its closest relatives belong to marine-associated genera from the Cytophaga-Flavobacterium-Bacteroides taxonomic group and appear evolutionarily distinct to any homologous carboxylesterases that have been studied to date in terms of structure or function. Molecular docking revealed putative binding of BHET, a short-chain PET derivative, onto the predicted MarCE three-dimensional structure. The synthetic ester-degrading activity of MarCE was subsequently confirmed by MarCE-mediated hydrolysis of 2 mM BHET substrate, indicated by the release of its breakdown products MHET and TPA, which were measured, respectively, as 1.28 and 0.12 mM following 2-h incubation at 30°C. The findings of this study provide further insight into marine carboxylic ester hydrolases, which have the potential to display unique functional plasticity resulting from their adaptation to complex and fluctuating marine environmentsw.


Asunto(s)
Carboxilesterasa , Filogenia , Carboxilesterasa/genética , Carboxilesterasa/metabolismo , Carboxilesterasa/química , Animales , Poríferos/microbiología , Ésteres/metabolismo , Expresión Génica , Simulación del Acoplamiento Molecular , Organismos Acuáticos/genética , Organismos Acuáticos/enzimología
2.
J Biol Chem ; 283(3): 1637-1643, 2008 Jan 18.
Artículo en Inglés | MEDLINE | ID: mdl-17993465

RESUMEN

Channelrhodopsins (ChRs) are light-gated ion channels that control photomovement of microalgae. In optogenetics, ChRs are widely applied for light-triggering action potentials in cells, tissues, and living animals, yet the spectral properties and photocycle of ChR remain obscure. In this study, we cloned a ChR from the colonial alga Volvox carteri, VChR. After electrophysiological characterization in Xenopus oocytes, VChR was expressed in COS-1 cells and purified. Time-resolved UV-visible spectroscopy revealed a pH-dependent equilibrium of two dark species, D(470)/D(480). Laser flashes converted both with tau approximately 200 mus into major photointermediates P(510)/P(530), which reverted back to the dark states with tau approximately 15-100 ms. Both intermediates were assigned to conducting states. Three early intermediates P(500)/P(515) and P(390) were detected on a ns to mus time scale. The spectroscopic and electrical data were unified in a photocycle model. The functional expression of VChR we report here paves the way toward a broader structure/function analysis of the recently identified class of light-gated ion channels.


Asunto(s)
Activación del Canal Iónico/efectos de la radiación , Luz , Rodopsina/metabolismo , Volvox/metabolismo , Volvox/efectos de la radiación , Animales , Electrodos , Electroforesis en Gel de Poliacrilamida , Modelos Biológicos , Oocitos , Rodopsina/aislamiento & purificación , Espectrofotometría Ultravioleta , Volvox/citología , Xenopus
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA