Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Base de datos
Tipo del documento
Intervalo de año de publicación
1.
Nat Commun ; 15(1): 7065, 2024 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-39152112

RESUMEN

The sympathetic nervous system controls bodily functions including vascular tone, cardiac rhythm, and the "fight-or-flight response". Sympathetic chain ganglia develop in parallel with preganglionic motor nerves extending from the neural tube, raising the question of whether axon targeting contributes to sympathetic chain formation. Using nerve-selective genetic ablations and lineage tracing in mouse, we reveal that motor nerve-associated Schwann cell precursors (SCPs) contribute sympathetic neurons and satellite glia after the initial seeding of sympathetic ganglia by neural crest. Motor nerve ablation causes mispositioning of SCP-derived sympathoblasts as well as sympathetic chain hypoplasia and fragmentation. Sympathetic neurons in motor-ablated embryos project precociously and abnormally towards dorsal root ganglia, eventually resulting in fusion of sympathetic and sensory ganglia. Cell interaction analysis identifies semaphorins as potential motor nerve-derived signaling molecules regulating sympathoblast positioning and outgrowth. Overall, central innervation functions both as infrastructure and regulatory niche to ensure the integrity of peripheral ganglia morphogenesis.


Asunto(s)
Ganglios Simpáticos , Neuronas Motoras , Cresta Neural , Células de Schwann , Sistema Nervioso Simpático , Animales , Sistema Nervioso Simpático/embriología , Ratones , Neuronas Motoras/fisiología , Células de Schwann/metabolismo , Cresta Neural/citología , Cresta Neural/metabolismo , Ganglios Simpáticos/citología , Ganglios Espinales , Semaforinas/metabolismo , Semaforinas/genética , Ratones Transgénicos , Neuroglía/metabolismo , Femenino
2.
Development ; 150(9)2023 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-37170957

RESUMEN

The peripheral nervous system (PNS) represents a highly heterogeneous entity with a broad range of functions, ranging from providing communication between the brain and the body to controlling development, stem cell niches and regenerative processes. According to the structure and function, the PNS can be subdivided into sensory, motor (i.e. the nerve fibers of motor neurons), autonomic and enteric domains. Different types of neurons correspond to these domains and recent progress in single-cell transcriptomics has enabled the discovery of new neuronal subtypes and improved the previous cell-type classifications. The developmental mechanisms generating the domains of the PNS reveal a range of embryonic strategies, including a variety of cell sources, such as migratory neural crest cells, placodal neurogenic cells and even recruited nerve-associated Schwann cell precursors. In this article, we discuss the diversity of roles played by the PNS in our body, as well as the origin, wiring and heterogeneity of every domain. We place a special focus on the most recent discoveries and concepts in PNS research, and provide an outlook of future perspectives and controversies in the field.


Asunto(s)
Neurogénesis , Sistema Nervioso Periférico , Cresta Neural , Células de Schwann , Neuronas Motoras
3.
Nat Commun ; 13(1): 2901, 2022 05 25.
Artículo en Inglés | MEDLINE | ID: mdl-35614045

RESUMEN

Adrenal glands are the major organs releasing catecholamines and regulating our stress response. The mechanisms balancing generation of adrenergic chromaffin cells and protecting against neuroblastoma tumors are still enigmatic. Here we revealed that serotonin (5HT) controls the numbers of chromaffin cells by acting upon their immediate progenitor "bridge" cells via 5-hydroxytryptamine receptor 3A (HTR3A), and the aggressive HTR3Ahigh human neuroblastoma cell lines reduce proliferation in response to HTR3A-specific agonists. In embryos (in vivo), the physiological increase of 5HT caused a prolongation of the cell cycle in "bridge" progenitors leading to a smaller chromaffin population and changing the balance of hormones and behavioral patterns in adulthood. These behavioral effects and smaller adrenals were mirrored in the progeny of pregnant female mice subjected to experimental stress, suggesting a maternal-fetal link that controls developmental adaptations. Finally, these results corresponded to a size-distribution of adrenals found in wild rodents with different coping strategies.


Asunto(s)
Células Cromafines , Neuroblastoma , Glándulas Suprarrenales/metabolismo , Animales , Catecolaminas/metabolismo , Células Cromafines/metabolismo , Femenino , Ratones , Neuroblastoma/metabolismo , Embarazo , Serotonina/metabolismo
4.
Brain Struct Funct ; 224(9): 3059-3073, 2019 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-31493024

RESUMEN

The development of individual organs and the whole organism is under the control by morphogenetic factors over the critical period of morphogenesis. This study was aimed to test our hypothesis that the developing brain operates as an endocrine organ during morphogenesis, in rats during the perinatal period (Ugrumov in Neuro Chem 35:837-850, 2010). Norepinephrine, which is a morphogenetic factor, was used as a marker of the endocrine activity of the developing brain, although it is also secreted by peripheral organs. In this study, it was first shown that the concentration of norepinephrine in the peripheral blood of neonatal rats is sufficient to ensure the morphogenetic effect on the peripheral organs and the brain itself. Using pharmacological suppression of norepinephrine production in the brain, but not in peripheral organs, it was shown that norepinephrine is delivered from the brain to the general circulation in neonatal rats, that is, during morphogenesis. In fact, even partial suppression of norepinephrine production in the brain of neonatal rats led to a significant decrease of norepinephrine concentration in plasma, suggesting that at this time the brain is an important source of circulating norepinephrine. Conversely, the suppression of the production of norepinephrine in the brain of prepubertal rats did not cause a change in its concentration in plasma, showing no secretion of brain-derived norepinephrine to the bloodstream after morphogenesis. The above data support our hypothesis that morphogenetic factors, including norepinephrine, are delivered from the developing brain to the bloodstream, which occurs only during the critical period of morphogenesis.


Asunto(s)
Encéfalo/crecimiento & desarrollo , Morfogénesis , Norepinefrina/fisiología , Animales , Sistema Endocrino/fisiología , Femenino , Masculino , Neuronas/fisiología , Norepinefrina/sangre , Ratas Wistar
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA