Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 153
Filtrar
1.
J Am Chem Soc ; 146(39): 26819-26829, 2024 Oct 02.
Artículo en Inglés | MEDLINE | ID: mdl-39302693

RESUMEN

The rational engineering of molecules is a powerful chemistry tool of pivotal importance in the fields of molecular magnetism and luminescence. Hence, systems that can be modulated via molecular engineering and composition control are expected to present extra versatility regarding the tunability of their properties. This is the case with molecular cluster aggregates (MCAs), high nuclearity molecular compounds. Herein, we demonstrate how the union of both strategies, namely, composition control and molecular engineering, can be employed to enhance molecular upconversion in MCAs. This was achieved by doping a {Gd8Er2Yb10} MCA with CeIII ions. By replacement of the optically silent GdIII ions with CeIII, the upconversion mechanism is modified due to CeIII-mediated cross-relaxation. In addition to this effect, we could also engineer the degree of metal site distortion due to the larger size of CeIII ions, relaxing the selection rules and impacting the upconversion quantum yield and luminescent thermometry. Opto-structural correlations demonstrate that the presented molecular engineering strategy can be used to enhance the performance of molecular upconverters.

2.
Chem Sci ; 2024 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-39296991

RESUMEN

The unique electronic nature of the 1,2,4,5-tetrazine or s-tetrazine (tz) ring has sparked tremendous scientific interest over the last few years. Tetrazines have found numerous applications, and their ability to coordinate to metal ions has opened the possibility of exploring their chemistry in both molecular systems and extended networks. The rich redox chemistry of s-tetrazines allows them to exchange electrons and switch between their dihydro (H2tz), neutral (tz), and radical (tz˙-) forms. Previous reports in the literature have observed electrochemically that a second electron can potentially be stored in the tetrazinyl ring and form a dianionic species. However, due to its extremely reactive nature, this has not been isolated before. Herein, the combination of strictly anhydrous and inert conditions, strong reducing agents, non-acidic solvents and most importantly blocking the accessibility of the nitrogen atoms by coordinating them to lanthanide ions allowed for the stabilization of a dianionic tetrazine in a lanthanocene complex. Three dinuclear metallocene complexes are reported, [(Cp*2Ln)2(tz˙-)(THF)2](BPh4) (Ln = Y (1-Y); Cp* = pentamethylcyclopentadienyl; THF = tetrahydrofuran) and [(Cp*2Ln)2(tz2-)(THF)2]·2THF (Ln = Gd (2-Gd), or Y (2-Y)), which utilize the unsubstituted tz as the ligand. In 1-Ln, the tz ligand is reduced to the radical anion (tz˙-), while in 2-Ln, the tz ligand is in the -2 charge state. These complexes are the first structurally and physically characterized complexes bearing the dianion radical of an s-tetrazine. Detailed structural analysis, ab initio calculations, and physical characterization support that the tz2- ligand is a closed-shell planar dianion with unique structural features vastly different from those of the tz, tz˙- and H2tz species.

3.
Angew Chem Int Ed Engl ; : e202411635, 2024 Jul 04.
Artículo en Inglés | MEDLINE | ID: mdl-38963679

RESUMEN

Over the years, polynuclear cyclic or torus complexes have attracted increasing interest due to their unique metal topologies and properties. However, the isolation of polynuclear cyclic organometallic complexes is extremely challenging due to their inherent reactivity, which stems from the labile and reactive metal-carbon bonds. In this study, the pyrazine ligand undergoes a radical-radical cross-coupling reaction leading to the formation of a decanuclear [(Cp*)20Dy10(L1)10] ⋅ 12(C7H8) (1; where L1 = anion of 2-prop-2-enyl-2H-pyrazine; Cp* = pentamethylcyclopentadienyl) complex, where all DyIII metal centres are bridged by the anionic L1 ligand. Amongst the family of polynuclear Ln organometallic complexes bearing CpR 2Lnx units (CpR = substituted cyclopentadienyl), 1 features the highest nuclearity obtained to date. In-depth computational studies were conducted to elucidate the proposed reaction mechanism and formation of L1, while probing of the magnetic properties of 1, revealed slow magnetic relaxation upon application of a static dc field.

4.
Nat Commun ; 15(1): 3010, 2024 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-38589348

RESUMEN

Single-ion anisotropy is vital for the observation of Single-Molecule Magnet (SMM) properties (i.e., a slow dynamics of the magnetization) in lanthanide-based systems. In the case of europium, the occurrence of this phenomenon has been inhibited by the spin and orbital quantum numbers that give way to J = 0 in the trivalent state and the half-filled population of the 4f orbitals in the divalent state. Herein, by optimizing the local crystal field of a quasi-linear bis(silylamido) EuII complex, the [EuII(N{SiMePh2}2)2] SMM is described, providing an example of a europium complex exhibiting slow relaxation of its magnetization. This behavior is dominated by a thermally activated (Orbach-like) mechanism, with an effective energy barrier of approximately 8 K, determined by bulk magnetometry and electron paramagnetic resonance. Ab initio calculations confirm second-order spin-orbit coupling effects lead to non-negligible axial magnetic anisotropy, splitting the ground state multiplet into four Kramers doublets, thereby allowing for the observation of an Orbach-like relaxation at low temperatures.

5.
Nat Commun ; 15(1): 3498, 2024 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-38664382

RESUMEN

Molecular systems known as single-molecule magnets (SMMs) exhibit magnet-like behaviour of slow relaxation of the magnetisation and magnetic hysteresis and have potential application in high-density memory storage or quantum computing. Often, their intrinsic magnetic properties are plagued by low-energy molecular vibrations that lead to phonon-induced relaxation processes, however, there is no straightforward synthetic approach for molecular systems that would lead to a small amount of low-energy vibrations and low phonon density of states at the spin-resonance energies. In this work, we apply knowledge accumulated over the last decade in molecular magnetism to nanoparticles, incorporating Er3+ ions in an ultrasmall sub-3 nm diamagnetic NaYF4 nanoparticle (NP) and probing the slow relaxation dynamics intrinsic to the Er3+ ion. Furthermore, by increasing the doping concentration, we also investigate the role of intraparticle interactions within the NP. The knowledge gained from this study is anticipated to enable better design of magnetically high-performance molecular and bulk magnets for a wide variety of applications, such as molecular electronics.

6.
Nanoscale ; 15(45): 18198-18202, 2023 Nov 23.
Artículo en Inglés | MEDLINE | ID: mdl-37941426

RESUMEN

A proof-of-concept for magneto-optical barcodes is demonstrated for the first time. The dual-signalled spectrum observed via magnetic circular dichroism spectroscopy can be used to develop anti-counterfeiting materials with extra layers of security when compared with the widely studied luminescent barcodes.

7.
Chem Commun (Camb) ; 59(94): 13970-13973, 2023 Nov 23.
Artículo en Inglés | MEDLINE | ID: mdl-37937393

RESUMEN

Reaction of the 1,2,4,5-tetrazine (tz˙-) radical and {Cp*2Tb}+ has yielded a tetranuclear radical-bridged TbIII single-molecule magnet. The strong Ln-radical coupling and the electronic differences of the TbIII ions in [(Cp*2Tb)4(tz˙-)4]·3C6H6 (1) are probed via magnetic, magneto-optical and computational studies.

8.
Angew Chem Int Ed Engl ; 62(49): e202313880, 2023 Dec 04.
Artículo en Inglés | MEDLINE | ID: mdl-37871234

RESUMEN

Atomically defined large metal clusters have applications in new reaction development and preparation of materials with tailored properties. Expanding the synthetic toolbox for reactive high nuclearity metal complexes, we report a new class of Fe clusters, Tp*4 W4 Fe13 S12 , displaying a Fe13 core with M-M bonds that has precedent only in main group and late metal chemistry. M13 clusters with closed shell electron configurations can show significant stability and have been classified as superatoms. In contrast, Tp*4 W4 Fe13 S12 displays a large spin ground state of S=13. This compound performs small molecule activations involving the transfer of up to 12 electrons resulting in significant cluster rearrangements.

9.
Chem Commun (Camb) ; 59(92): 13715-13718, 2023 Nov 16.
Artículo en Inglés | MEDLINE | ID: mdl-37906523

RESUMEN

The impact of composition control and energy transfer on luminescence thermometry was investigated in a TbIII/EuIII dual-emitting molecular cluster-aggregate, known as {Ln20}. The study of lifetime dynamics sheds new light on how one can take advantage of rational planning to enhance thermometric performance and gaining insights into intriguing optical properties.

10.
ACS Appl Mater Interfaces ; 15(37): 44137-44146, 2023 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-37695985

RESUMEN

Composition control is a powerful tool for obtaining high-performance lanthanide (Ln) luminescent materials with adjustable optical outputs. This strategy is well-established for hierarchically structured nanoparticles, but it is rarely applied to molecular compounds due to the limited number of metal centers within a single unit. In this work, we present a series of molecular cluster-aggregates (MCAs) with an icosanuclear core {Ln2Eu2Tb16} (Ln = Ce, Pr, Nd, Sm, Gd, Dy, Ho, Er, Tm, and Yb) in which we explore composition control, akin to nanoparticles, to modulate the optical output. More specifically, we target to understand how the presence of a third LnIII doping ion would impact the well-known TbIII → EuIII energy transfer and the ratiometric optical thermometry performance based on the TbIII/EuIII pair. Photophysical properties at room and at varying temperatures were investigated. Based on experimental data and well-established intrinsic features, such as spin-orbit coupling strength and LnIII 4f energy levels' structure, we discuss the possible luminescent processes present in each MCA and provide insight into qualitative trends that can be rationally correlated throughout the series.

11.
Angew Chem Int Ed Engl ; 62(40): e202309152, 2023 Oct 02.
Artículo en Inglés | MEDLINE | ID: mdl-37595074

RESUMEN

Remote temperature probing at the cryogenic range is of utmost importance for the advancement of future quantum technologies. Despite the notable achievements in luminescent thermometers, accurately measuring temperatures below 10 K remains a challenging endeavor. In this study, we propose a novel magneto-optical thermometric approach based on the magnetic-circular dichroism (MCD) technique, which offers unprecedented capabilities for meticulous temperature variation analysis at cryogenic temperatures. The inherent temperature sensitivity of the MCD C-term, in conjunction with both positive and negative signals, enables highly sensitive magneto-optical temperature probing. Additionally, a groundbreaking relative thermal sensitivity value of 95.3 % K-1 at 2.54 K can be achieved using a mononuclear lanthanide complex, [[Ho(acac)3 (phen)], in the presence of a 0.25 T applied magnetic field and using a combination of multiparametric thermal read-out with multiple regression. These results unequivocally demonstrate the viability and effectiveness of our methodology for cryogenic temperature sensing.

12.
Chem Sci ; 14(22): 5827-5841, 2023 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-37293634

RESUMEN

In this perspective, we provide an overview of the recent achievements in luminescent lanthanide-based molecular cluster-aggregates (MCAs) and illustrate why MCAs can be seen as the next generation of highly efficient optical materials. MCAs are high nuclearity compounds composed of rigid multinuclear metal cores encapsulated by organic ligands. The combination of high nuclearity and molecular structure makes MCAs an ideal class of compounds that can unify the properties of traditional nanoparticles and small molecules. By bridging the gap between both domains, MCAs intrinsically retain unique features with tremendous impacts on their optical properties. Although homometallic luminescent MCAs have been extensively studied since the late 1990s, it was only recently that heterometallic luminescent MCAs were pioneered as tunable luminescent materials. These heterometallic systems have shown tremendous impacts in areas such as anti-counterfeiting materials, luminescent thermometry, and molecular upconversion, thus representing a new generation of lanthanide-based optical materials.

13.
Chem Commun (Camb) ; 59(56): 8723-8726, 2023 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-37351861

RESUMEN

Herein, we present a luminescent single-molecule magnet, [Dy(acac)3bpm] (acac- = acetylacetonate, bpm = 2,2'-bipyrimidine), which displays luminescence thermometry with a maximum thermal sensitivity of 1.5% K-1 (70 K) and effective energy barriers (309 K, 0 Oe; 345 K, 1200 Oe) among the largest reported for SMMs with thermometric capabilities.

14.
Nat Chem ; 15(8): 1100-1107, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37231297

RESUMEN

The best-performing single-molecule magnets (SMMs) have historically relied on pseudoaxial ligands delocalized across several coordinated atoms. This coordination environment has been found to elicit strong magnetic anisotropy, but lanthanide-based SMMs with low coordination numbers have remained synthetically elusive species. Here we report a cationic 4f complex bearing only two bis-silylamide ligands, Yb(III)[{N(SiMePh2)2}2][Al{OC(CF3)3}4], which exhibits slow relaxation of its magnetization. The combination of the bulky silylamide ligands and weakly coordinating [Al{OC(CF3)3}4]- anion provides a sterically hindered environment that suitably stabilizes the pseudotrigonal geometry necessary to elicit strong ground-state magnetic anisotropy. The resolution of the mJ states by luminescence spectroscopy is supported by ab initio calculations, which show a large ground-state splitting of approximately 1,850 cm-1. These results provide a facile route to access a bis-silylamido Yb(III) complex, and further underline the desirability of axially coordinated ligands with well-localized charges for high-performing SMMs.

15.
Nanoscale ; 15(12): 5778-5785, 2023 Mar 23.
Artículo en Inglés | MEDLINE | ID: mdl-36857687

RESUMEN

Luminescence thermometry with trivalent lanthanide ions is a promising avenue for contactless temperature probing. The area has been growing exponentially for the last two decades, and its viability has been successfully demonstrated in various research domains. However, moving from laboratory equipment to real-life applications remains a challenging task. One of the reasons is the possibility of a background luminescence from the probing device or probed environment. To tackle this issue, we elegantly incorporate a rarely explored thermometric approach called time-gated luminescence thermometry (TGLT). Furthermore, we demonstrate an enhanced relative sensitivity through this innovative approach and a path to move toward practical application.

16.
Chem Commun (Camb) ; 58(91): 12700-12703, 2022 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-36305224

RESUMEN

The first example of a cationic cluster-based fcu-lanthanide metal-organic framework (MOF) bearing an asymmetric linker, herein named UOTT-4, has been designed and fully characterized. Compared to its rare-earth (RE) anionic counterpart (RE-UiO-66), UOTT-4 was found to significantly improve the performance towards adsorption of iodine vapour at room temperature, opening avenues for the design of the next-generation cationic porous materials for the beneficial uptake and confinement of target molecules.

17.
Inorg Chem ; 61(42): 16856-16873, 2022 Oct 24.
Artículo en Inglés | MEDLINE | ID: mdl-36219252

RESUMEN

Reduction of the diamagnetic Ti(III)/Ti(III) dimer [Cl2Ti(µ-NImDipp)]2 (1) (NImDipp = [1,3-bis(Dipp)imidazolin-2-iminato]-, Dipp = C6H3-2,6-iPr2) with 4 and 6 equiv of KC8 generates the intramolecularly arene-masked, dinuclear titanium compounds [(µ-N-η6-ImDipp)Ti]2 (2) and {[(Et2O)2K](µ-N-µ-η6:η6-ImDipp)Ti}2 (3), respectively, in modest yields. The compounds have been structurally characterized by X-ray crystallographic analysis, and inspection of the bond metrics within the η6-coordinated aryl substituent of the bridging imidazolin-2-iminato ligand shows perturbation of the aromatic system most consistent with two-electron reduction of the ring. As such, 2 and 3 can be assigned respectively as possessing metal centers in formal Ti(III)/Ti(III) and Ti(II)/Ti(II) oxidation states. Exploration of their redox chemistry reveal the ability to reduce several substrate equivalents. For instance, treatment of 2 with excess C8H8 (COT) forms the novel COT-bridged complex [(ImDippN)(η8-COT)Ti](µ-η2:η3-COT)[Ti(η4-COT)(NImDipp)] (4) that dissociates in THF solutions to give mononuclear (ImDippN)Ti(η8-COT)(THF) (5). Addition of COT to 3 yields heterometallic [(ImDippN)(η4-COT)Ti(µ-η4:η5-COT)K(THF)(µ-η6:η4-COT)Ti(NImDipp)(µ-η4:η4-COT)K(THF)2]n (6). Compounds 4 and 5 are the products of the 4-electron oxidation of 2, while 6 stands as the 8-electron oxidation product of 3. Reduction of organozides was also explored. Low temperature reaction of 2 with 4 equiv of AdN3 gives the terminal and bridged imido complex [(ImDippN)Ti(═NAd)](µ-NAd)2[Ti(NImDipp)(N3Ad)] (7) that undergoes intermolecular C-H activation of toluene at room temperature to afford the amido compound [(ImDippN)Ti(NHAd)](µ-NAd)2[Ti(C6H4Me)(NImDipp)] (8-tol). These complexes are the 6-electron oxidation products of the reaction of 2 with AdN3. Furthermore, treatment of 3 with 4 equiv of AdN3 produces the thermally stable Ti(III)/Ti(III) terminal and bridged imido [K(18-crown-6)(THF)2]{[(ImDippN)Ti(NAd)](µ-NAd)2K[Ti(NImDipp)]} (10). Altogether, these reactions firmly establish 2 and 3 as unprecedented Ti(I)/Ti(I) and Ti(0)/Ti(0) synthons with the clear capacity to effect multielectron reductions ranging from 4 to 8 electrons.

18.
Dalton Trans ; 51(38): 14420-14428, 2022 Oct 04.
Artículo en Inglés | MEDLINE | ID: mdl-36129130

RESUMEN

Herein we detail the straightforward and scalable synthesis of sodium and potassium complexes of the 2,5-bis(tert-butyldimethylsilyl)-3,4-diphenylplumbolyl dianion (PblTBS,Ph). Their solid-state structures were found to comprise either monomeric solvates or coordination polymers depending on the alkali metal ion and crystallization medium. These complexes were readily prepared with high yields and purity compared to known routes to the dilithium congener of PblTBS,Ph and are well-positioned to serve as convenient precursors for salt metathesis-type reactions leading to metal complexes of the understudied PblTBS,Ph ligand.

19.
J Am Chem Soc ; 144(39): 17955-17965, 2022 10 05.
Artículo en Inglés | MEDLINE | ID: mdl-36154166

RESUMEN

We herein report the synthesis and magnetic properties of a Ni(II)-porphyrin tethered to an imidazole ligand through a flexible electron-responsive mechanical hinge. The latter is capable of undergoing a large amplitude and fully reversible folding motion under the effect of electrical stimulation. This redox-triggered movement is exploited to force the axial coordination of the appended imidazole ligand onto the square-planar Ni(II) center, resulting in a change in its spin state from low spin (S = 0) to high spin (S = 1) proceeding with an 80% switching efficiency. The driving force of this reversible folding motion is the π-dimerization between two electrogenerated viologen cation radicals. The folding motion and the associated spin state switching are demonstrated on the grounds of NMR, (spectro)electrochemical, and magnetic data supported by quantum calculations.


Asunto(s)
Níquel , Porfirinas , Estimulación Eléctrica , Imidazoles , Ligandos , Níquel/química , Viológenos
20.
Chem Commun (Camb) ; 58(65): 9112-9115, 2022 Aug 11.
Artículo en Inglés | MEDLINE | ID: mdl-35880486

RESUMEN

An unprecedented sandwich complex of the actinides is synthesized from the treatment of [UI2(HMPA)4]I (HMPA = OP(NMe2)3) (2) with 3 equiv. of K(C14H10) to give the neutral, bis(arenide) species U(η6-C14H10)(η4-C14H10)(HMPA)2 (1). Solid-state X-ray, SQUID magnetometry, and XANES analyses are consistent with tetravalent uranium supported by [C14H10]2- ligands. In one case, treatment of 1 with an equiv. of AgOTf led to the isolation of U(η6-C14H10)2(HMPA)(THF) (3), formed from ring migration and haptotropic rearrangement. Complete active space (CASSCF) calculations indicate the U-C bonding to solely consist of π-interactions, presenting a unique electronic structure distinct from classic actinide sandwich compounds.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA