Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Base de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Nat Protoc ; 18(11): 3253-3288, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37798358

RESUMEN

Much of our current understanding of microbiology is based on the application of genetic engineering procedures. Since their inception (more than 30 years ago), methods based largely on allelic exchange and two-step selection processes have become a cornerstone of contemporary bacterial genetics. While these tools are established for adapted laboratory strains, they have limited applicability in clinical or environmental isolates displaying a large and unknown genetic repertoire that are recalcitrant to genetic modifications. Hence, new tools allowing genetic engineering of intractable bacteria must be developed to gain a comprehensive understanding of them in the context of their biological niche. Herein, we present a method for precise, efficient and rapid engineering of the opportunistic pathogen Pseudomonas aeruginosa. This procedure relies on recombination of short single-stranded DNA facilitated by targeted double-strand DNA breaks mediated by a synthetic Cas9 coupled with the efficient Ssr recombinase. Possible applications include introducing single-nucleotide polymorphisms, short or long deletions, and short DNA insertions using synthetic single-stranded DNA templates, drastically reducing the need of PCR and cloning steps. Our toolkit is encoded on two plasmids, harboring an array of different antibiotic resistance cassettes; hence, this approach can be successfully applied to isolates displaying natural antibiotic resistances. Overall, this toolkit substantially reduces the time required to introduce a range of genetic manipulations to a minimum of five experimental days, and enables a variety of research and biotechnological applications in both laboratory strains and difficult-to-manipulate P. aeruginosa isolates.


Asunto(s)
Sistemas CRISPR-Cas , Pseudomonas aeruginosa , Pseudomonas aeruginosa/genética , ADN de Cadena Simple , Edición Génica/métodos , Ingeniería Genética/métodos
2.
PLoS Genet ; 17(6): e1009585, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-34061833

RESUMEN

Small proteins play essential roles in bacterial physiology and virulence, however, automated algorithms for genome annotation are often not yet able to accurately predict the corresponding genes. The accuracy and reliability of genome annotations, particularly for small open reading frames (sORFs), can be significantly improved by integrating protein evidence from experimental approaches. Here we present a highly optimized and flexible bioinformatics workflow for bacterial proteogenomics covering all steps from (i) generation of protein databases, (ii) database searches and (iii) peptide-to-genome mapping to (iv) visualization of results. We used the workflow to identify high quality peptide spectrum matches (PSMs) for small proteins (≤ 100 aa, SP100) in Staphylococcus aureus Newman. Protein extracts from S. aureus were subjected to different experimental workflows for protein digestion and prefractionation and measured with highly sensitive mass spectrometers. In total, 175 proteins with up to 100 aa (SP100) were identified. Out of these 24 (ranging from 9 to 99 aa) were novel and not contained in the used genome annotation.144 SP100 are highly conserved and were found in at least 50% of the publicly available S. aureus genomes, while 127 are additionally conserved in other staphylococci. Almost half of the identified SP100 were basic, suggesting a role in binding to more acidic molecules such as nucleic acids or phospholipids.


Asunto(s)
Proteínas Bacterianas/metabolismo , Proteogenómica/métodos , Staphylococcus aureus/metabolismo , Proteínas Bacterianas/genética , Simulación por Computador , Bases de Datos de Proteínas , Espectrometría de Masas/métodos , Anotación de Secuencia Molecular , Sistemas de Lectura Abierta , Péptido Hidrolasas/metabolismo , Filogenia , Staphylococcus aureus/genética
3.
Nucleic Acids Res ; 49(15): e89, 2021 09 07.
Artículo en Inglés | MEDLINE | ID: mdl-34125903

RESUMEN

Emerging evidence places small proteins (≤50 amino acids) more centrally in physiological processes. Yet, their functional identification and the systematic genome annotation of their cognate small open-reading frames (smORFs) remains challenging both experimentally and computationally. Ribosome profiling or Ribo-Seq (that is a deep sequencing of ribosome-protected fragments) enables detecting of actively translated open-reading frames (ORFs) and empirical annotation of coding sequences (CDSs) using the in-register translation pattern that is characteristic for genuinely translating ribosomes. Multiple identifiers of ORFs that use the 3-nt periodicity in Ribo-Seq data sets have been successful in eukaryotic smORF annotation. They have difficulties evaluating prokaryotic genomes due to the unique architecture (e.g. polycistronic messages, overlapping ORFs, leaderless translation, non-canonical initiation etc.). Here, we present a new algorithm, smORFer, which performs with high accuracy in prokaryotic organisms in detecting putative smORFs. The unique feature of smORFer is that it uses an integrated approach and considers structural features of the genetic sequence along with in-frame translation and uses Fourier transform to convert these parameters into a measurable score to faithfully select smORFs. The algorithm is executed in a modular way, and dependent on the data available for a particular organism, different modules can be selected for smORF search.


Asunto(s)
Genoma/genética , Sistemas de Lectura Abierta/genética , Biosíntesis de Proteínas/genética , Ribosomas/genética , Algoritmos , Biología Computacional , Eucariontes/genética , Anotación de Secuencia Molecular , Células Procariotas
4.
PLoS One ; 16(3): e0248865, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33780465

RESUMEN

Dinoroseobacter shibae living in the photic zone of marine ecosystems is frequently exposed to oxygen that forms highly reactive species. Here, we analysed the adaptation of D. shibae to different kinds of oxidative stress using a GeLC-MS/MS approach. D. shibae was grown in artificial seawater medium in the dark with succinate as sole carbon source and exposed to hydrogen peroxide, paraquat or diamide. We quantified 2580 D. shibae proteins. 75 proteins changed significantly in response to peroxide stress, while 220 and 207 proteins were differently regulated by superoxide stress and thiol stress. As expected, proteins like thioredoxin and peroxiredoxin were among these proteins. In addition, proteins involved in bacteriochlophyll biosynthesis were repressed under disulfide and superoxide stress but not under peroxide stress. In contrast, proteins associated with iron transport accumulated in response to peroxide and superoxide stress. Interestingly, the iron-responsive regulator RirA in D. shibae was downregulated by all stressors. A rirA deletion mutant showed an improved adaptation to peroxide stress suggesting that RirA dependent proteins are associated with oxidative stress resistance. Altogether, 139 proteins were upregulated in the mutant strain. Among them are proteins associated with protection and repair of DNA and proteins (e. g. ClpB, Hsp20, RecA, and a thioredoxin like protein). Strikingly, most of the proteins involved in iron metabolism such as iron binding proteins and transporters were not part of the upregulated proteins. In fact, rirA deficient cells were lacking a peroxide dependent induction of these proteins that may also contribute to a higher cell viability under these conditions.


Asunto(s)
Adaptación Fisiológica , Proteínas Bacterianas/metabolismo , Estrés Oxidativo , Rhodobacteraceae/fisiología , Adenosina Trifosfato/metabolismo , Daño del ADN , Replicación del ADN/efectos de los fármacos , Metabolismo Energético/efectos de los fármacos , Homeostasis , Hierro/metabolismo , Oxidantes/toxicidad , Peróxidos/metabolismo , Rhodobacteraceae/crecimiento & desarrollo , Compuestos de Sulfhidrilo/metabolismo , Superóxidos/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA