Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Base de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
FEBS J ; 290(11): 2895-2908, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-36695650

RESUMEN

Various d-amino acids have been found in a wide range of organisms, including mammals. Although the physiological functions of various d-amino acids have been reported or suggested, the molecular basis of these biological functions has been elucidated in only a few cases. The identification of a d-amino acid biosynthetic enzyme is a critical step in understanding the mechanism of the physiological functions of d-amino acids. While in vivo functional screening can be a powerful tool for identifying novel metabolic enzymes, none of the existing organisms exhibit growth dependent on d-amino acid other than d-Ala and d-Glu. Here, we report the first organism that exhibits non-canonical d-amino acid auxotrophy. We found that an Escherichia coli strain lacking the major d-Ala and d-Glu biosynthetic enzymes, alr, dadX, and murI, and expressing the mutated d-amino acid transaminase (DAAT) gene from Bacillus sp. YM-1 (MB3000/mdaat+ ) grew well when supplemented with certain d-amino acid. A multicopy suppression study with plasmids encoding one of the 51 PLP-dependent enzymes of E. coli showed that MB3000/mdaat+ could detect weak and moonlighting racemase activity, such from cystathionine ß-lyase (MetC) and a negative regulator of MalT activity/cystathionine ß-lyase (MalY)-these exhibit only a few tenths to a few thousandths of the racemization activity of canonical amino acid racemases. We believe that this unique platform will contribute to further research in this field by identifying novel d-amino acid-metabolizing enzymes.


Asunto(s)
Isomerasas de Aminoácido , Aminoácidos , Aminoácidos/genética , Aminoácidos/metabolismo , Escherichia coli/metabolismo , Isomerasas de Aminoácido/genética , Racemasas y Epimerasas/metabolismo , Clonación Molecular
2.
Nutrients ; 16(1)2023 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-38201872

RESUMEN

The interaction between the gut microbiota and the host can influence the host's immune system. Bifidobacterium, a commensal genus of gut bacteria, seems to have positive effects on host health. Our previous clinical research showed that B. longum subsp. longum BB536 enhanced innate and adaptive immune responses in elderly individuals with a lower grade of immunity, but the immunomodulatory mechanism is still unclear. In this study, dendritic cell (DC) surface markers in peripheral blood mononuclear cells isolated from healthy individuals were evaluated through coculture with heat-killed BB536. DC markers, innate immune activity and cytokine levels in plasma were also evaluated by a randomized, double-blind, placebo-controlled, parallel-group study (UMIN000045564) with 4 weeks of continuous live BB536 intake. BB536 significantly increased the expression of CD86 and HLA-DR on plasmacytoid DCs (pDCs) in vitro. Compared to placebo (n = 48), a significant increase in the expression of CD86 on peripheral pDCs was detected at week 4 of live BB536 intake (n = 49; 1 × 1010 CFU/day). Furthermore, coculture with hk-BB536 significantly increased the IFNγ expression level and demonstrated trends of increased IFNα1 and IFNß expression. These findings suggest that consumption of BB536 has potential immunomodulatory effects on healthy individuals through the activation of peripheral pDCs.


Asunto(s)
Presentación de Antígeno , Corea , Leucocitos Mononucleares , Adulto , Humanos , Bifidobacterium , Células Dendríticas
3.
J Biochem ; 160(6): 345-353, 2016 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-27387750

RESUMEN

d-Aspartate is found in the nervous and reproductive system and participates in various physiological roles. While several lines of evidence suggest that this amino acid has an endogenous origin, the enzyme responsible for mammalian d-Asp biosynthesis has not yet been identified. We show that mammalian serine racemase (SRR), the primary enzyme responsible for brain d-Ser production, catalyses Asp racemization via a two-base mechanism. We observed that overexpression of SRR in rat pheochromocytoma PC12 cells resulted in an increase in intracellular d-Asp compared with control cells, demonstrating that SRR functions as an Asp racemase in the cells. To investigate the impact of endogenous SRR on endogenous d-Asp levels in the cells, we generated SRR-knockout (SRR-KO) PC12 cells. The SRR-KO cells exhibited decreased intracellular d-Ser levels, but production levels of d-Asp were unaffected. In contrast, SRR-KO mice showed significantly decreased d-Asp levels in their frontal cortices and hippocampi, where SRR is normally highly expressed, while d-Asp levels in the cerebellum and testes remained unchanged. Our results indicate that SRR indeed acts as a d-Asp biosynthetic enzyme in some organs and/or tissues, and also provide evidences that there should be some additional enzyme for d-Asp synthesis in mammals.


Asunto(s)
Ácido D-Aspártico/biosíntesis , Lóbulo Frontal/metabolismo , Hipocampo/metabolismo , Racemasas y Epimerasas/metabolismo , Testículo/metabolismo , Animales , Ácido D-Aspártico/genética , Técnicas de Silenciamiento del Gen , Masculino , Ratones , Ratones Noqueados , Células PC12 , Racemasas y Epimerasas/genética , Ratas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA