Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
1.
PLoS One ; 7(6): e40133, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22768241

RESUMEN

Local protein synthesis in dendrites contributes to the synaptic modifications underlying learning and memory. The mRNA encoding the α subunit of the calcium/calmodulin dependent Kinase II (CaMKIIα) is dendritically localized and locally translated. A role for CaMKIIα local translation in hippocampus-dependent memory has been demonstrated in mice with disrupted CaMKIIα dendritic translation, through deletion of CaMKIIα 3'UTR. We studied the dendritic localization and local translation of CaMKIIα in the mouse olfactory bulb (OB), the first relay of the olfactory pathway, which exhibits a high level of plasticity in response to olfactory experience. CaMKIIα is expressed by granule cells (GCs) of the OB. Through in situ hybridization and synaptosome preparation, we show that CaMKIIα mRNA is transported in GC dendrites, synaptically localized and might be locally translated at GC synapses. Increases in the synaptic localization of CaMKIIα mRNA and protein in response to brief exposure to new odors demonstrate that they are activity-dependent processes. The activity-induced dendritic transport of CaMKIIα mRNA can be inhibited by an NMDA receptor antagonist and mimicked by an NMDA receptor agonist. Finally, in mice devoid of CaMKIIα 3'UTR, the dendritic localization of CaMKIIα mRNA is disrupted in the OB and olfactory associative learning is severely impaired. Our studies thus reveal a new functional modality for CaMKIIα local translation, as an essential determinant of olfactory plasticity.


Asunto(s)
Dendritas/enzimología , Bulbo Olfatorio/enzimología , Biosíntesis de Proteínas , Animales , Aprendizaje por Asociación , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/metabolismo , Dendritas/ultraestructura , Masculino , Ratones , Ratones Endogámicos C57BL , Bulbo Olfatorio/citología , Bulbo Olfatorio/ultraestructura , Transporte de Proteínas , ARN Mensajero , Receptores de N-Metil-D-Aspartato/metabolismo , Sinapsis/enzimología , Sinapsis/ultraestructura
2.
J Neurosci ; 31(6): 2205-15, 2011 Feb 09.
Artículo en Inglés | MEDLINE | ID: mdl-21307257

RESUMEN

The fragile X mental retardation protein (FMRP) is an RNA-binding protein essential for multiple aspects of neuronal mRNA metabolism. Its absence leads to the fragile X syndrome, the most prevalent genetic form of mental retardation. The anatomical landmark of the disease, also present in the Fmr1 knock-out (KO) mice, is the hyperabundance of immature-looking lengthened dendritic spines. We used the well known continuous production of adult-born granule cells (GCs) in the mouse olfactory bulb (OB) to analyze the consequences of Fmrp loss on the differentiation of GCs. Morphological analysis of GCs in the Fmr1 KO mice showed an increase in spine density without a change in spine length. We developed an RNA interference strategy to cell-autonomously mutate Fmr1 in a wild-type OB network. Mutated GCs displayed an increase in spine density and spine length. Detailed analysis of the spines through immunohistochemistry, electron microscopy, and electrophysiology surprisingly showed that, despite these abnormalities, spines receive normal glutamatergic synapses, and thus that mutated adult-born neurons are synaptically integrated into the OB circuitry. Time-course analysis of the spine defects showed that Fmrp cell-autonomously downregulates the level and rate of spine production and limits their overgrowth. Finally, we report that Fmrp does not regulate dendritogenesis in standard conditions but is necessary for activity-dependent dendritic remodeling. Overall, our study of Fmrp in the context of adult neurogenesis has enabled us to carry out a precise dissection of the role of Fmrp in neuronal differentiation and underscores its pleiotropic involvement in both spinogenesis and dendritogenesis.


Asunto(s)
Diferenciación Celular/genética , Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil/metabolismo , Neurogénesis/fisiología , Neuronas/fisiología , Bulbo Olfatorio/citología , Análisis de Varianza , Animales , Diferenciación Celular/efectos de los fármacos , Dendritas/efectos de los fármacos , Dendritas/fisiología , Dendritas/ultraestructura , Espinas Dendríticas/efectos de los fármacos , Espinas Dendríticas/fisiología , Espinas Dendríticas/ultraestructura , Potenciales Postsinápticos Excitadores/efectos de los fármacos , Potenciales Postsinápticos Excitadores/genética , Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil/genética , Proteínas Fluorescentes Verdes/genética , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Microscopía Electrónica de Transmisión , Mutación/genética , Neurogénesis/genética , Neuronas/efectos de los fármacos , Técnicas de Placa-Clamp/métodos , ARN Interferente Pequeño/farmacología , Sinapsis/metabolismo , Sinapsis/ultraestructura , Factores de Tiempo
3.
Proc Natl Acad Sci U S A ; 105(28): 9582-7, 2008 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-18621727

RESUMEN

Insulin-degrading enzyme (IDE) is a ubiquitous zinc-metalloprotease that hydrolyzes several pathophysiologically relevant peptides, including insulin and the amyloid beta-protein (Abeta). IDE is inhibited irreversibly by compounds that covalently modify cysteine residues, a mechanism that could be operative in the etiology of type 2 diabetes mellitus (DM2) or Alzheimer's disease (AD). However, despite prior investigation, the molecular basis underlying the sensitivity of IDE to thiol-alkylating agents has not been elucidated. To address this topic, we conducted a comprehensive mutational analysis of the 13 cysteine residues within IDE. Our analysis implicates C178, C812, and C819 as the principal residues conferring thiol sensitivity. The involvement of C812 and C819, residues quite distant from the catalytic zinc atom, provides functional evidence that the active site of IDE comprises two separate domains that are operational only in close apposition. Structural analysis and other evidence predict that alkylation of C812 and C819 disrupts substrate binding, whereas alkylation of C178 interferes with the apposition of active-site domains and subtly repositions zinc-binding residues. Unexpectedly, alkylation of C590 was found to activate hydrolysis of Abeta significantly, while having no effect on insulin, demonstrating that chemical modulation of IDE can be both bidirectional and highly substrate selective. Our findings resolve a long-standing riddle about the basic enzymology of IDE with important implications for the etiology of DM2 and AD. Moreover, this work uncovers key details about the mechanistic basis of the unusual substrate selectivity of IDE that may aid the development of pharmacological agents or IDE mutants with therapeutic value.


Asunto(s)
Cisteína/química , Insulisina/química , Compuestos de Sulfhidrilo/química , Alquilantes/farmacología , Sitios de Unión , Humanos , Insulisina/genética , Mutagénesis Sitio-Dirigida , Especificidad por Sustrato
4.
J Biol Chem ; 282(35): 25453-63, 2007 Aug 31.
Artículo en Inglés | MEDLINE | ID: mdl-17613531

RESUMEN

Insulin-degrading enzyme (IDE) is a zinc metalloprotease that hydrolyzes amyloid-beta (Abeta) and insulin, which are peptides associated with Alzheimer disease (AD) and diabetes, respectively. Our previous structural analysis of substrate-bound human 113-kDa IDE reveals that the N- and C-terminal domains of IDE, IDE-N and IDE-C, make substantial contact to form an enclosed catalytic chamber to entrap its substrates. Furthermore, IDE undergoes a switch between the closed and open conformations for catalysis. Here we report a substrate-free IDE structure in its closed conformation, revealing the molecular details of the active conformation of the catalytic site of IDE and new insights as to how the closed conformation of IDE may be kept in its resting, inactive conformation. We also show that Abeta is degraded more efficiently by IDE carrying destabilizing mutations at the interface of IDE-N and IDE-C (D426C and K899C), resulting in an increase in Vmax with only minimal changes to Km. Because ATP is known to activate the ability of IDE to degrade short peptides, we investigated the interaction between ATP and activating mutations. We found that these mutations rendered IDE less sensitive to ATP activation, suggesting that ATP might facilitate the transition from the closed state to the open conformation. Consistent with this notion, we found that ATP induced an increase in hydrodynamic radius, a shift in electrophoretic mobility, and changes in secondary structure. Together, our results highlight the importance of the closed conformation for regulating the activity of IDE and provide new molecular details that will facilitate the development of activators and inhibitors of IDE.


Asunto(s)
Adenosina Trifosfato/química , Insulisina/química , Adenosina Trifosfato/metabolismo , Enfermedad de Alzheimer/enzimología , Sustitución de Aminoácidos , Péptidos beta-Amiloides/química , Péptidos beta-Amiloides/metabolismo , Sitios de Unión , Cristalografía por Rayos X , Diabetes Mellitus/enzimología , Humanos , Insulina/química , Insulina/metabolismo , Insulisina/metabolismo , Cinética , Mutación Missense , Unión Proteica , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA