Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Base de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Heliyon ; 10(10): e31058, 2024 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-38803939

RESUMEN

Loading drugs in drug delivery systems can increase their retention time and control their release within the knee cavity. Hence, we aimed to improve the therapeutic efficacy of celecoxib and kartogenin (KGN) through their loading in chitosan nanoparticles (CS NPs). Celecoxib-loaded nanoparticles (CNPs) and KGN-loaded nanoparticles (K-CS NPs) were prepared using the absorption method and covalent attachment, respectively, through an ionic gelation process. The morphology, particle size, zeta potential, polydispersity index (PDI), conjugation efficiency (CE), encapsulation efficiency (EE), the in vitro release of the drug from NPs, as well as MTT and hemolysis assays, were evaluated. Then, the IL-1ß-stimulated chondrocytes were treated with CNPs and K-CS NPs, individually or in combination, to explore their potential chondroprotective and anti-inflammatory effects. CNPs and K-CS NPs showed sizes of 352.6 ± 22.5 and 232.7 ± 4.5 nm, respectively, suitable for intra-articular (IA) injection. Based on the hemolysis results, both NPs exhibited good hemocompatibility within the studied range. Results showed that treating IL-1ß-pretreated chondrocytes with CNPs or K-CS NPs remarkably limited the negative effects of IL-1ß, especially when both types of NPs were used together. Therefore, injecting these two NPs into the knee cavity may improve drug bioavailability, rapidly suppress inflammation and pain, and promote cartilage regeneration. Meanwhile, for the first time, the study investigated the effect of the simultaneous use of celecoxib and KGN to treat osteoarthritis (OA).

2.
Sci Rep ; 13(1): 15494, 2023 09 19.
Artículo en Inglés | MEDLINE | ID: mdl-37726323

RESUMEN

Cartilage lesions, especially osteoarthritis (OA), are a common health problem, causing pain and disability in various age groups, principally in older adults and athletes. One of the main challenges to be considered in cartilage tissue repair is the regeneration of cartilage tissue in an active inflammatory environment. Fisetin has various biological effects including anti-inflammatory, antioxidant, apoptotic, and antiproliferative activities. The only disadvantages of fisetin in the pharmaceutical field are its instability and low solubility in aqueous media. This study is aimed at preparing chitosan (CS)-based nanoparticles to yield fisetin with improved bioavailability features. Then, the effect of fisetin-loaded nanoparticles (FNPs) on inflammatory responses in interleukin-1ß (IL-1ß) pretreated human chondrocytes has also been investigated. FNPs presented an average size of 363.1 ± 17.2 nm and a zeta potential of + 17.7 ± 0.1 mV with encapsulation efficiency (EE) and loading capacity (LC) of 78.79 ± 7.7% and 37.46 ± 6.6%, respectively. The viability of human chondrocytes was not affected by blank nanoparticles (BNPs) up to a concentration of 2000 µg/mL. In addition, the hemolysis results clearly showed that FNPs did not damage the red blood cells (RBCs) and had good hemocompatibility within the range investigated. FNPs, similar to fisetin, were able to inhibit the inflammatory responses induced by IL-1ß such as the expression of interleukin-6 (IL-6) and tumor necrosis factor-α (TNF-α) while increasing the production of an anti-inflammatory cytokine such as interleukin-10 (IL-10). Overall, the in vitro evaluation results of the anti-inflammatory activity showed that FNPs can serve as delivery systems to transfer fisetin to treat inflammation in OA.


Asunto(s)
Antiinflamatorios , Osteoartritis , Humanos , Anciano , Antiinflamatorios/farmacología , Osteoartritis/tratamiento farmacológico , Inflamación/tratamiento farmacológico , Flavonoles
3.
Beilstein J Nanotechnol ; 13: 363-389, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35529803

RESUMEN

Osteoarthritis, which typically arises from aging, traumatic injury, or obesity, is the most common form of arthritis, which usually leads to malfunction of the joints and requires medical interventions due to the poor self-healing capacity of articular cartilage. However, currently used medical treatment modalities have reported, at least in part, disappointing and frustrating results for patients with osteoarthritis. Recent progress in the design and fabrication of tissue-engineered microscale/nanoscale platforms, which arises from the convergence of stem cell research and nanotechnology methods, has shown promising results in the administration of new and efficient options for treating osteochondral lesions. This paper presents an overview of the recent advances in osteochondral tissue engineering resulting from the application of micro- and nanotechnology approaches in the structure of biomaterials, including biological and microscale/nanoscale topographical cues, microspheres, nanoparticles, nanofibers, and nanotubes.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA