Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
bioRxiv ; 2023 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-36909588

RESUMEN

The circuit origins of aggression in autism spectrum disorder remain undefined. Here we report Tac1-expressing glutamatergic neurons in ventrolateral division of ventromedial hypothalamus (VMHvl) drive intermale aggression. Aggression is increased due to increases of Ube3a gene dosage in the VMHvl neurons when modeling autism due to maternal 15q11-13 triplication. Targeted deletion of increased Ube3a copies in VMHvl reverses the elevated aggression adult mice. VMHvl neurons form excitatory synapses onto hypothalamic arcuate nucleus AgRP/NPY neurons through a NRXN1-CBLN1-GluD1 transsynaptic complex and UBE3A impairs this synapse by decreasing Cbln1 gene expression. Exciting AgRP/NPY arcuate neurons leads to feedback inhibition of VMHvl neurons and inhibits aggression. Asymptomatic increases of UBE3A synergize with a heterozygous deficiency of presynaptic Nrxn1 or postsynaptic Grid1 (both ASD genes) to increase aggression. Targeted deletions of Grid1 in arcuate AgRP neurons impairs the VMHvl to AgRP/NPY neuron excitatory synapses while increasing aggression. Chemogenetic/optogenetic activation of arcuate AgRP/NPY neurons inhibits VMHvl neurons and represses aggression. These data reveal that multiple autism genes converge to regulate the VMHvl-arcuate AgRP/NPY glutamatergic synapse. The hypothalamic circuitry implicated by these data suggest impaired excitation of AgRP/NPY feedback inhibitory neurons may explain the increased aggression behavior found in genetic forms of autism.

2.
Ann Neurol ; 86(6): 885-898, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31591744

RESUMEN

OBJECTIVE: Autism spectrum disorder (ASD) affects 1 in 59 children, yet except for rare genetic causes, the etiology in most ASD remains unknown. In the ASD brain, inflammatory cytokine and transcript profiling shows increased expression of genes encoding mediators of the innate immune response. We evaluated postmortem brain tissue for adaptive immune cells and immune cell-mediated cytotoxic damage that could drive this innate immune response in the ASD brain. METHODS: Standard neuropathology diagnostic methods including histology and immunohistochemistry were extended with automated image segmentation to quantify identified pathologic features in the postmortem brains. RESULTS: We report multifocal perivascular lymphocytic cuffs contain increased numbers of lymphocytes in ~65% of ASD compared to control brains in males and females, across all ages, in most brain regions, and in white and gray matter, and leptomeninges. CD3+ T lymphocytes predominate over CD20+ B lymphocytes and CD8+ over CD4+ T lymphocytes in ASD brains. Importantly, the perivascular cuff lymphocyte numbers correlate to the quantity of astrocyte-derived round membranous blebs. Membranous blebs form as a cytotoxic reaction to lymphocyte attack. Consistent with multifocal immune cell-mediated injury at perivascular cerebrospinal fluid (CSF)-brain barriers, a subset of white matter vessels have increased perivascular space (with jagged contours) and collagen in ASD compared to control brains. CSF-brain barrier pathology is also evident at cerebral cortex pial and ventricular ependymal surfaces in ASD. INTERPRETATION: The findings suggest dysregulated cellular immunity damages astrocytes at foci along the CSF-brain barrier in ASD. ANN NEUROL 2019;86:885-898.


Asunto(s)
Astrocitos , Trastorno del Espectro Autista , Encéfalo , Linfocitos T , Adolescente , Adulto , Anciano , Niño , Preescolar , Femenino , Humanos , Masculino , Persona de Mediana Edad , Adulto Joven , Astrocitos/inmunología , Astrocitos/patología , Trastorno del Espectro Autista/inmunología , Trastorno del Espectro Autista/patología , Encéfalo/inmunología , Encéfalo/patología , Linfocitos T/inmunología , Linfocitos T/patología , Bancos de Tejidos/tendencias
3.
J Neurosci ; 38(16): 3890-3900, 2018 04 18.
Artículo en Inglés | MEDLINE | ID: mdl-29540554

RESUMEN

Microdeletion of a region in chromosome 16p11.2 increases susceptibility to autism. Although this region contains exons of 29 genes, disrupting only a small segment of the region, which spans five genes, is sufficient to cause autistic traits. One candidate gene in this critical segment is MVP, which encodes for the major vault protein (MVP) that has been implicated in regulation of cellular transport mechanisms. MVP expression levels in MVP+/- mice closely phenocopy those of 16p11.2 mutant mice, suggesting that MVP+/- mice may serve as a model of MVP function in 16p11.2 microdeletion. Here we show that MVP regulates the homeostatic component of ocular dominance (OD) plasticity in primary visual cortex. MVP+/- mice of both sexes show impairment in strengthening of open-eye responses after several days of monocular deprivation (MD), whereas closed-eye responses are weakened as normal, resulting in reduced overall OD plasticity. The frequency of miniature EPSCs (mEPSCs) in pyramidal neurons is decreased in MVP+/- mice after extended MD, suggesting a reduction of functional synapses. Correspondingly, upregulation of surface GluA1 AMPA receptors is reduced in MVP+/- mice after extended MD, and is accompanied by altered expression of STAT1 and phosphorylated ERK, which have been previously implicated in OD plasticity. Normalization of STAT1 levels by introducing STAT1 shRNA rescues surface GluA1 and open-eye responses, implicating STAT1 as a downstream effector of MVP. These findings demonstrate a specific role for MVP as a key molecule influencing the homeostatic component of activity-dependent synaptic plasticity, and potentially the corresponding phenotypes of 16p11.2 microdeletion syndrome.SIGNIFICANCE STATEMENT Major vault protein (MVP), a candidate gene in 16p11.2 microdeletion syndrome, has been implicated in the regulation of several cellular processes including transport mechanisms and scaffold signaling. However, its role in brain function and plasticity remains unknown. In this study, we identified MVP as an important regulator of the homeostatic component of experience-dependent plasticity, via regulation of STAT1 and ERK signaling. This study helps reveal a new mechanism for an autism-related gene in brain function, and suggests a broader role for neuro-immune interactions in circuit level plasticity. Importantly, our findings might explain specific components of the pathophysiology of 16p11.2 microdeletion syndrome.


Asunto(s)
Trastorno Autístico/genética , Trastornos de los Cromosomas/genética , Discapacidad Intelectual/genética , Plasticidad Neuronal , Partículas Ribonucleoproteicas en Bóveda/metabolismo , Corteza Visual/fisiología , Animales , Deleción Cromosómica , Cromosomas Humanos Par 16/genética , Predominio Ocular , Potenciales Postsinápticos Excitadores , Femenino , Homeostasis , Masculino , Ratones , Ratones Endogámicos C57BL , Potenciales Postsinápticos Miniatura , Proteína Quinasa 3 Activada por Mitógenos/metabolismo , Células Piramidales/metabolismo , Células Piramidales/fisiología , Receptores AMPA/metabolismo , Factor de Transcripción STAT1/metabolismo , Partículas Ribonucleoproteicas en Bóveda/genética , Corteza Visual/citología , Corteza Visual/metabolismo
4.
Handb Clin Neurol ; 150: 31-39, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29496150

RESUMEN

Autism spectrum disorder (ASD or autism) is a neurodevelopmental condition that affects over 1% of the population worldwide. Developing effective preventions and treatments for autism will depend on understanding the genetic perturbations and underlying neuropathology of the disorder. While evidence from magnetic resonance imaging and other noninvasive techniques points to altered development and organization of the autistic brain, these tools lack the resolution for identifying the cellular and molecular underpinnings of the disorder. Postmortem studies of high-quality human brain tissue currently represent the only viable option to pursuing these types of studies. However, the availability of high-quality ASD brain tissue has been extremely limited. Here we describe the establishment of a privately funded tissue bank, Autism BrainNet, a network of brain collection sites that work in a coordinated fashion to develop an adequate library of human postmortem brain tissues. Autism BrainNet was initiated as a collaboration between the Simons Foundation and Autism Speaks, and is currently funded by the Simons Foundation Autism Research Initiative. Autism BrainNet has collection sites (nodes) in California, Texas, New York, and Massachusetts; an affiliated, international node is located in Oxford, England. All donations to this network become part of a consolidated pool of tissue that is distributed to qualified investigators worldwide to carry out autism research. An essential component of this program is a widespread outreach program that highlights the need for postmortem brain donations to families affected by autism, led by the Autism Science Foundation. Challenges include an outreach campaign that deals with a disorder beginning in early childhood, collecting an adequate number of donations to deal with the high level of biologic heterogeneity of autism, and preparing this limited resource for optimal distribution to the greatest number of investigators.


Asunto(s)
Trastorno Autístico , Investigación Biomédica/métodos , Encéfalo/patología , Sistemas de Información , Bancos de Tejidos/tendencias , Trastorno Autístico/diagnóstico , Trastorno Autístico/patología , Trastorno Autístico/terapia , Diagnóstico , Humanos , Bancos de Tejidos/provisión & distribución
5.
Nature ; 543(7646): 507-512, 2017 03 23.
Artículo en Inglés | MEDLINE | ID: mdl-28297715

RESUMEN

Maternally inherited 15q11-13 chromosomal triplications cause a frequent and highly penetrant type of autism linked to increased gene dosages of UBE3A, which encodes a ubiquitin ligase with transcriptional co-regulatory functions. Here, using in vivo mouse genetics, we show that increasing UBE3A in the nucleus downregulates the glutamatergic synapse organizer Cbln1, which is needed for sociability in mice. Epileptic seizures also repress Cbln1 and are found to expose sociability impairments in mice with asymptomatic increases in UBE3A. This Ube3a-seizure synergy maps to glutamate neurons of the midbrain ventral tegmental area (VTA), where Cbln1 deletions impair sociability and weaken glutamatergic transmission. We provide preclinical evidence that viral-vector-based chemogenetic activation of, or restoration of Cbln1 in, VTA glutamatergic neurons reverses the sociability deficits induced by Ube3a and/or seizures. Our results suggest that gene and seizure interactions in VTA glutamatergic neurons impair sociability by downregulating Cbln1, a key node in the expanding protein interaction network of autism genes.


Asunto(s)
Trastorno Autístico/genética , Regulación hacia Abajo , Proteínas del Tejido Nervioso/deficiencia , Precursores de Proteínas/deficiencia , Convulsiones/psicología , Conducta Social , Ubiquitina-Proteína Ligasas/metabolismo , Área Tegmental Ventral/metabolismo , Animales , Trastorno Autístico/fisiopatología , Trastorno Autístico/psicología , Núcleo Celular/metabolismo , Femenino , Ácido Glutámico/metabolismo , Masculino , Ratones , Proteínas del Tejido Nervioso/biosíntesis , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Neuronas/metabolismo , Precursores de Proteínas/biosíntesis , Precursores de Proteínas/genética , Precursores de Proteínas/metabolismo , ARN Mensajero/metabolismo , Transmisión Sináptica , Ubiquitina-Proteína Ligasas/genética
6.
J Neurosci ; 34(31): 10256-63, 2014 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-25080587

RESUMEN

Accumulating evidence points to a role for Janus kinase/signal transducers and activators of transcription (STAT) immune signaling in neuronal function; however, its role in experience-dependent plasticity is unknown. Here we show that one of its components, STAT1, negatively regulates the homeostatic component of ocular dominance plasticity in visual cortex. After brief monocular deprivation (MD), STAT1 knock-out (KO) mice show an accelerated increase of open-eye responses, to a level comparable with open-eye responses after a longer duration of MD in wild-type (WT) mice. Therefore, this component of plasticity is abnormally enhanced in KO mice. Conversely, increasing STAT1 signaling by IFNγ treatment in WT mice reduces the homeostatic component of plasticity by impairing open-eye responses. Enhanced plasticity in KO mice is accompanied by sustained surface levels of GluA1 AMPA receptors and increased amplitude and frequency of AMPA receptor-mediated mEPSCs, which resemble changes in WT mice after a longer duration of MD. These results demonstrate a unique role for STAT1 during visual cortical plasticity in vivo through a mechanism that includes AMPA receptors.


Asunto(s)
Regulación del Desarrollo de la Expresión Génica/genética , Homeostasis/fisiología , Plasticidad Neuronal/fisiología , Receptores AMPA/metabolismo , Factor de Transcripción STAT1/metabolismo , Corteza Visual/fisiología , Animales , Animales Recién Nacidos , Biotinilación , Toxina del Cólera/metabolismo , Estimulación Eléctrica , Homeostasis/genética , Técnicas In Vitro , Interferón gamma/farmacología , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Plasticidad Neuronal/efectos de los fármacos , Plasticidad Neuronal/genética , Imagen Óptica , Técnicas de Placa-Clamp , Factor de Transcripción STAT1/deficiencia , Privación Sensorial/fisiología , Corteza Visual/citología
7.
Prog Brain Res ; 207: 243-54, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24309257

RESUMEN

The visual cortex provides powerful evidence for experience-dependent plasticity during development, and for stimulus and reinforcement-dependent plasticity in adulthood. The synaptic and circuit mechanisms underlying such plasticity are being progressively understood. Increasing evidence supports the hypothesis that plasticity in both the developing and adult visual cortex is initiated by a transient reduction of inhibitory drive, and implemented by persistent changes at excitatory synapses. Developmental plasticity may be induced by alterations in the balance of activity from the two eyes and is implemented by a cascade of signals that lead to feedforward and feedback changes at synapses. Adult plasticity is imposed on mature synapses and requires additional neurotransmitter-dependent mechanisms that alter inhibition and subsequently response gain.


Asunto(s)
Plasticidad Neuronal/fisiología , Corteza Visual/fisiología , Adulto , Animales , Niño , Humanos , Sinapsis/fisiología
8.
J Neurochem ; 115(4): 994-1006, 2010 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-20964689

RESUMEN

Serotonin (5-hydroxytryptamine, 5HT) is the neurotransmitter that mediates dishabituation in Aplysia. Serotonin mediates this behavioral change through the reversal of synaptic depression in sensory neurons (SNs). However, the 5HT receptors present in SNs and in particular, the receptor important for activation of protein kinase C (PKC) have not been fully identified. Using a recent genome assembly of Aplysia, we identified new receptors from the 5HT(2) , 5HT(4) , and 5HT(7) families. Using RT-PCR from isolated SNs, we found that three 5HT receptors, 5HT(1Apl(a)) , 5HT(2Apl) , and 5HT(7Apl) were expressed in SNs. These receptors were cloned and expressed in a heterologous system. In this system, 5HT(2Apl) could significantly translocate PKC Apl II in response to 5HT and this was blocked by pirenperone, a 5HT(2) receptor antagonist. Surprisingly, pirenperone did not block 5HT-mediated translocation of PKC Apl II in SNs, nor 5HT-mediated reversal of depression. Expression of 5HT(1Apl(a)) in SNs or genistein, an inhibitor of tyrosine kinases inhibited both PKC translocation and reversal of depression. These results suggest a non-canonical mechanism for the translocation of PKC Apl II in SNs.


Asunto(s)
Aplysia/enzimología , Isoenzimas/metabolismo , Proteína Quinasa C/metabolismo , Receptores de Serotonina/fisiología , Animales , Aplysia/genética , Células Cultivadas , Clonación Molecular/métodos , Activación Enzimática/genética , Isoenzimas/fisiología , Filogenia , Proteína Quinasa C/fisiología , Receptores de Serotonina/genética
9.
J Neurochem ; 109(4): 1129-43, 2009 May.
Artículo en Inglés | MEDLINE | ID: mdl-19302474

RESUMEN

In vertebrates, a brain-specific transcript from the atypical protein kinase C (PKC) zeta gene encodes protein kinase M (PKM) zeta, a constitutively active kinase implicated in the maintenance of synaptic plasticity and memory. We have cloned the atypical PKC from Aplysia, PKC Apl III. We did not find a transcript in Aplysia encoding PKMzeta, and evolutionary analysis of atypical PKCs suggests formation of this transcript is restricted to vertebrates. Instead, over-expression of PKC Apl III in Aplysia sensory neurons leads to production of a PKM fragment of PKC Apl III. This cleavage was induced by calcium and blocked by calpain inhibitors. Moreover, nervous system enriched spliced forms of PKC Apl III show enhanced cleavage. PKC Apl III could also be activated through phosphorylation downstream of phosphoinositide 3-kinase. We suggest that PKM forms of atypical PKCs play a conserved role in memory formation, but the mechanism of formation of these kinases has changed over evolution.


Asunto(s)
Aplysia/metabolismo , Proteína Quinasa C/genética , Empalme Alternativo , Secuencia de Aminoácidos , Animales , Calpaína/metabolismo , Células Cultivadas , Clonación Molecular , ADN/administración & dosificación , ADN/genética , Regulación Enzimológica de la Expresión Génica/genética , Regulación Enzimológica de la Expresión Génica/fisiología , Procesamiento de Imagen Asistido por Computador , Inmunohistoquímica , Microinyecciones , Microscopía Confocal , Datos de Secuencia Molecular , Plasticidad Neuronal/efectos de los fármacos , Fosforilación , Proteína Quinasa C/química , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Células Receptoras Sensoriales/metabolismo , Serotonina/farmacología
10.
J Neurosci Res ; 86(13): 2876-83, 2008 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-18521934

RESUMEN

An Aplysia Trk-like receptor (ApTrkl) was previously shown to be involved in cell wide long-term facilitation (LTF) and activation of ERK when serotonin (5-HT) is applied to the cell soma. The current study investigated the regulation of ApTrkl by overexpressing the receptor and several variants in Aplysia sensory neuron cultures. Kinase activity-dependent constitutive activation of ApTrkl was observed mainly on the plasma membrane. These studies revealed two modes of receptor internalization: (1) kinase activity-dependent internalization and (2) 5-HT-dependent, kinase activity-independent internalization. Both modes of internalization were ligand independent, and the action of 5-HT was mediated through G-protein-coupled receptors (GPCRs). On the other hand, methiothepin, an inverse agonist of 5-HT GPCRs activated endogenous ApTrkl to the same extent as 5-HT, suggesting a transactivation mechanism due to a novel coupling of GPCRs to receptor tyrosine kinase (RTK) activation that is also activated through inverse agonist binding. The neuropeptide sensorin could transiently activate ApTrkl but was not required for 5-HT-induced ApTrkl activation.


Asunto(s)
Aplysia/fisiología , Activación Enzimática/fisiología , Receptor trkA/metabolismo , Células Receptoras Sensoriales/metabolismo , Animales , Inmunohistoquímica , Transporte de Proteínas/fisiología , Receptor trkA/genética , Receptores Acoplados a Proteínas G/metabolismo , Serotonina/metabolismo , Activación Transcripcional
11.
Mol Cell Biol ; 28(15): 4719-33, 2008 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-18505819

RESUMEN

In Aplysia californica, the serotonin-mediated translocation of protein kinase C (PKC) Apl II to neuronal membranes is important for synaptic plasticity. The orthologue of PKC Apl II, PKCepsilon, has been reported to require phosphatidic acid (PA) in conjunction with diacylglycerol (DAG) for translocation. We find that PKC Apl II can be synergistically translocated to membranes by the combination of DAG and PA. We identify a mutation in the C1b domain (arginine 273 to histidine; PKC Apl II-R273H) that removes the effects of exogenous PA. In Aplysia neurons, the inhibition of endogenous PA production by 1-butanol inhibited the physiological translocation of PKC Apl II by serotonin in the cell body and at the synapse but not the translocation of PKC Apl II-R273H. The translocation of PKC Apl II-R273H in the absence of PA was explained by two additional effects of this mutation: (i) the mutation removed C2 domain-mediated inhibition, and (ii) the mutation decreased the concentration of DAG required for PKC Apl II translocation. We present a model in which, under physiological conditions, PA is important to activate the novel PKC Apl II both by synergizing with DAG and removing C2 domain-mediated inhibition.


Asunto(s)
Aplysia/enzimología , Isoenzimas/metabolismo , Neuronas Aferentes/enzimología , Ácidos Fosfatidicos/metabolismo , Proteína Quinasa C/metabolismo , Secuencia de Aminoácidos , Animales , Línea Celular , Diglicéridos/farmacología , Isoenzimas/antagonistas & inhibidores , Isoenzimas/química , Cinética , Modelos Biológicos , Datos de Secuencia Molecular , Proteínas Mutantes/metabolismo , Neuronas Aferentes/efectos de los fármacos , Fosfoinositido Fosfolipasa C/metabolismo , Fosfolipasa D/metabolismo , Proteína Quinasa C/antagonistas & inhibidores , Proteína Quinasa C/química , Estructura Terciaria de Proteína , Transporte de Proteínas/efectos de los fármacos , Alineación de Secuencia , Serotonina/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA