Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Base de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Front Microbiol ; 15: 1415893, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39015740

RESUMEN

Introduction: Campylobacter spp. are a public health concern, yet there is still no effective vaccine or medicine available. Methods: Here, we developed a Campylobacter jejuni-specific antibody and found that it targeted a menaquinol cytochrome c reductase complex QcrC. Results: The antibody was specifically reactive to multiple C. jejuni strains including clinical isolates from patients with acute enteritis and was found to inhibit the energy metabolism and growth of C. jejuni. Different culture conditions produced different expression levels of QcrC in C. jejuni, and these levels were closely related not only to the energy metabolism of C. jejuni but also its pathogenicity. Furthermore, immunization of mice with recombinant QcrC induced protective immunity against C. jejuni infection. Discussion: Taken together, our present findings highlight a possible antibody- or vaccination-based strategy to prevent or control Campylobacter infection by targeting the QcrC-mediated metabolic pathway.

2.
Front Cell Infect Microbiol ; 14: 1355679, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38841110

RESUMEN

Intestinal bacteria metabolize dietary substances to produce bioactive postbiotics, among which some are recognized for their role in promoting host health. We here explored the postbiotic potential of two omega-3 α-linolenic acid-derived metabolites: trans-10-cis-15-octadecadienoic acid (t10,c15-18:2) and cis-9-cis-15-octadecadienoic acid (c9,c15-18:2). Dietary intake of lipids rich in omega-3 α-linolenic acid elevated levels of t10,c15-18:2 and c9,c15-18:2 in the serum and feces of mice, an effect dependent on the presence of intestinal bacteria. Notably, t10,c15-18:2 mitigated skin inflammation in mice that became hypersensitive after exposure to 2,4-dinitrofluorobenzene, an experimental model for allergic contact dermatitis. In particular, t10,c15-18:2-but not c9,c15-18:2-attenuated ear swelling and edema, characteristic symptoms of contact hypersensitivity. The anti-inflammatory effects of t10,c15-18:2 were due to its ability to suppress the release of vascular endothelial growth factor A from keratinocytes, thereby mitigating the enhanced vascular permeability induced by hapten stimulation. Our study identified retinoid X receptor as a functional receptor that mediates the downregulation of skin inflammation upon treatment with t10,c15-18:2. Our results suggest that t10,c15-18:2 holds promise as an omega-3 fatty acid-derived postbiotic with potential therapeutic implications for alleviating the skin edema seen in allergic contact dermatitis-induced inflammation.


Asunto(s)
Modelos Animales de Enfermedad , Regulación hacia Abajo , Ácidos Grasos Omega-3 , Factor A de Crecimiento Endotelial Vascular , Animales , Ratones , Factor A de Crecimiento Endotelial Vascular/metabolismo , Ácidos Grasos Omega-3/metabolismo , Ácidos Grasos Omega-3/farmacología , Dermatitis por Contacto/metabolismo , Dinitrofluorobenceno , Piel/metabolismo , Piel/patología , Queratinocitos/metabolismo , Queratinocitos/efectos de los fármacos , Femenino , Dermatitis Alérgica por Contacto/metabolismo , Humanos , Microbioma Gastrointestinal/efectos de los fármacos , Heces/química , Heces/microbiología
3.
J Am Chem Soc ; 146(3): 2237-2247, 2024 01 24.
Artículo en Inglés | MEDLINE | ID: mdl-38196121

RESUMEN

The acetal (O-glycoside) bonds of glycans and glycoconjugates are chemically and biologically vulnerable, and therefore C-glycosides are of interest as more stable analogs. We hypothesized that, if the O-glycoside linkage plays a vital role in glycan function, the biological activities of C-glycoside analogs would vary depending on their substituents. Based on this idea, we adopted a "linkage-editing strategy" for the creation of glycan analogs (pseudo-glycans). We designed three types of pseudo-glycans with CH2 and CHF linkages, which resemble the O-glycoside linkage in terms of bond lengths, angles, and bulkiness, and synthesized them efficiently by means of fluorovinyl C-glycosylation and selective hydrogenation reactions. Application of this strategy to isomaltose (IM), an inducer of amylase expression, and α-GalCer, which activates iNKT cells, resulted in the discovery of CH2-IM, which shows increased amylase production ability, and CHF-α-GalCer, which shows activity opposite that of native α-GalCer, serving as an antagonist of iNKT cells.


Asunto(s)
Galactosilceramidas , Glicósidos , Polisacáridos , Glicosilación , Polisacáridos/química , Amilasas/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA