Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 99
Filtrar
Más filtros

Base de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
2.
Biomed Pharmacother ; 176: 116937, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38870632

RESUMEN

The advent of general anesthesia (GA) has significant implications for clinical practice. However, the exact mechanisms underlying GA-induced transitions in consciousness remain elusive. Given some similarities between GA and sleep, the sleep-arousal neural nuclei and circuits involved in sleep-arousal, including the 5-HTergic system, could be implicated in GA. Herein, we utilized pharmacology, optogenetics, chemogenetics, fiber photometry, and retrograde tracing to demonstrate that both endogenous and exogenous activation of the 5-HTergic neural circuit between the dorsal raphe nucleus (DR) and basolateral amygdala (BLA) promotes arousal and facilitates recovery of consciousness from sevoflurane anesthesia. Notably, the 5-HT1A receptor within this pathway holds a pivotal role. Our findings will be conducive to substantially expanding our comprehension of the neural circuit mechanisms underlying sevoflurane anesthesia and provide a potential target for modulating consciousness, ultimately leading to a reduction in anesthetic dose requirements and side effects.


Asunto(s)
Anestésicos por Inhalación , Complejo Nuclear Basolateral , Estado de Conciencia , Núcleo Dorsal del Rafe , Sevoflurano , Sevoflurano/farmacología , Animales , Núcleo Dorsal del Rafe/efectos de los fármacos , Núcleo Dorsal del Rafe/metabolismo , Estado de Conciencia/efectos de los fármacos , Anestésicos por Inhalación/farmacología , Complejo Nuclear Basolateral/efectos de los fármacos , Complejo Nuclear Basolateral/metabolismo , Complejo Nuclear Basolateral/fisiología , Masculino , Ratones , Ratones Endogámicos C57BL , Serotonina/metabolismo , Vías Nerviosas/efectos de los fármacos , Vías Nerviosas/fisiología , Receptor de Serotonina 5-HT1A/metabolismo , Optogenética
4.
Eur J Pharmacol ; 978: 176790, 2024 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-38942263

RESUMEN

Nicotine has been shown to enhance object recognition memory in the novel object recognition (NOR) test by activating excitatory neurons in the medial prefrontal cortex (mPFC). However, the exact neuronal mechanisms underlying the nicotine-induced activation of mPFC neurons and the resultant memory enhancement remain poorly understood. To address this issue, we performed brain-slice electrophysiology and the NOR test in male C57BL/6J mice. Whole-cell patch-clamp recordings from layer V pyramidal neurons in the mPFC revealed that nicotine augments the summation of evoked excitatory postsynaptic potentials (eEPSPs) and that this effect was suppressed by N-[3,5-Bis(trifluoromethyl)phenyl]-N'-[2,4-dibromo-6-(2H-tetrazol-5-yl)phenyl]urea (NS5806), a voltage-dependent potassium (Kv) 4.3 channel activator. In line with these findings, intra-mPFC infusion of NS5806 suppressed systemically administered nicotine-induced memory enhancement in the NOR test. Additionally, miRNA-mediated knockdown of Kv4.3 channels in mPFC pyramidal neurons enhanced object recognition memory. Furthermore, inhibition of A-type Kv channels by intra-mPFC infusion of 4-aminopyridine was found to enhance object recognition memory, while this effect was abrogated by prior intra-mPFC NS5806 infusion. These results suggest that nicotine augments the summation of eEPSPs via the inhibition of Kv4.3 channels in mPFC layer V pyramidal neurons, resulting in the enhancement of object recognition memory.


Asunto(s)
Ratones Endogámicos C57BL , Nicotina , Corteza Prefrontal , Reconocimiento en Psicología , Animales , Masculino , Corteza Prefrontal/efectos de los fármacos , Corteza Prefrontal/fisiología , Corteza Prefrontal/metabolismo , Nicotina/farmacología , Ratones , Reconocimiento en Psicología/efectos de los fármacos , Canales de Potasio Shal/metabolismo , Células Piramidales/efectos de los fármacos , Células Piramidales/fisiología , Memoria/efectos de los fármacos , Potenciales Postsinápticos Excitadores/efectos de los fármacos
5.
Biol Pharm Bull ; 47(3): 556-561, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38432911

RESUMEN

Mental illness poses a huge social burden, accounting for approximately 14% of all deaths. Depression, a major component of mental illness, affects approximately 300 million people worldwide, mainly in developed countries, and is not only a major social burden but also a cause of suicide. The social burden of depression is estimated to increase further in developing countries, and overcoming it is a pressing issue for all countries, including Japan. Although clinical evidence has demonstrated the efficacy of serotonergic neurotransmission enhancers in the treatment of depression, the full picture of their therapeutic effects has not yet been fully elucidated. In this review, we show that the hyperactivity of serotonin neurons, especially those in the dorsal raphe nucleus, is commonly induced by various antidepressants within a period corresponding to the onset of their clinical efficacy. We established quantitative prediction methods for pharmacological activity using only chemical structures to translate the biological understanding of mental disorders, including major depressive disorders, into clinically effective therapeutics. Our method exhibited better performance than the previously reported methods of quantitative prediction, while targeting a larger number of proteins. Our article suggests the importance of integrative neuropharmacology and informatics-based pharmacology studies to understand the biological basis of mental disorders and facilitate drug development for these disorders.


Asunto(s)
Trastorno Depresivo Mayor , Trastornos Mentales , Trastornos Psicóticos , Humanos , Neurofarmacología , Trastornos Mentales/tratamiento farmacológico , Informática
6.
Transl Psychiatry ; 14(1): 27, 2024 Jan 16.
Artículo en Inglés | MEDLINE | ID: mdl-38228604

RESUMEN

Obsessive-compulsive disorder (OCD) is a highly prevalent neuropsychiatric disorder poorly controlled with pharmacological treatment because of the wide variation in symptom patterns. We analysed real-world data on adverse self-reports and insurance claims to identify a novel therapeutic target for OCD. We found that dopamine D2 receptor (D2R) agonists increased the incidence of OCD-like symptoms, which were suppressed by the concomitant use of proton pump inhibitors (PPIs). Further, OCD-like repetitive and habitual behaviours were observed in mice repeatedly injected with a D2R agonist, quinpirole. However, these abnormalities were suppressed by short-term PPI treatment. In quinpirole-treated mice, PPI inhibited pyramidal neuron hyperactivity in the lateral orbitofrontal cortex, a region where the P-type proton pump gene Atp4a is abundantly expressed. In primary cultured cortical neurons, short-term PPI treatment lowered intracellular pH and decreased firing activity, which was mimicked by Atp4a knockdown. Our findings show that inhibition of P-type proton pumps may be a novel therapeutic strategy for OCD.


Asunto(s)
Trastorno Obsesivo Compulsivo , Inhibidores de la Bomba de Protones , Ratones , Animales , Quinpirol/farmacología , Inhibidores de la Bomba de Protones/farmacología , Inhibidores de la Bomba de Protones/uso terapéutico , Trastorno Obsesivo Compulsivo/tratamiento farmacológico , Trastorno Obsesivo Compulsivo/etiología , Neuronas , Concentración de Iones de Hidrógeno
7.
Biol Pharm Bull ; 47(1): 253-258, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38267040

RESUMEN

Perry disease, a rare autosomal dominant neurodegenerative disorder, is characterized by parkinsonism, depression or apathy, unexpected weight loss, and central hypoventilation. Genetic analyses have revealed a strong association between point mutations in the dynactin I gene (DCTN1) coding p150glued and Perry disease. Although previous reports have suggested a critical role of p150glued aggregation in Perry disease pathology, whether and how p150glued mutations affect protein aggregation is not fully understood. In this study, we comprehensively investigated the intracellular distribution of the p150glued mutants in HEK293T cells. We further assessed the effect of co-overexpression of the wild-type p150glued protein with mutants on the formation of mutant aggregates. Notably, overexpression of p150glued mutants identified in healthy controls, which is also associated with amyotrophic lateral sclerosis, showed a thread-like cytoplasmic distribution, similar to the wild-type p150glued. In contrast, p150glued mutants in Perry disease and motor neuron disease caused aggregation. In addition, the co-overexpression of the wild-type protein with p150glued mutants in Perry disease suppressed aggregate formation. In contrast, the p150glued aggregation of motor neuron disease mutants was less affected by the wild-type p150glued. Further investigation of the mechanism of aggregate formation, contents of the aggregates, and biological mechanisms of Perry disease could help develop novel therapeutics.


Asunto(s)
Enfermedad de la Neurona Motora , Humanos , Complejo Dinactina/genética , Células HEK293 , Citosol , Mutación
8.
Biol Pharm Bull ; 46(8): 1049-1056, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37532556

RESUMEN

Bortezomib, an anticancer drug for multiple myeloma and mantle cell lymphoma, causes severe adverse events and leads to peripheral neuropathy. The associated neuropathy limits the use of bortezomib and could lead to discontinuation of the treatment; therefore, effective intervention is crucial. In the present study, we statistically searched for a drug that could alleviate bortezomib-induced peripheral neuropathy using adverse event self-reports. We observed that specific inhibitors of the mechanistic target of rapamycin (mTOR) lowered the incidence of bortezomib-induced peripheral neuropathy. These findings were experimentally validated in mice, which exhibited long-lasting mechanical hypersensitivity after repeated bortezomib treatment. This effect was inhibited for hours after a systemic injection with rapamycin or everolimus in a dose-dependent manner. Bortezomib-induced allodynia was accompanied by the activation of spinal astrocytes, and intrathecal injection of mTOR inhibitors or an inhibitor of ribosomal protein S6 kinase 1, a downstream target of mTOR, exhibited considerable analgesic effects in a dose-dependent manner. These results suggest that mTOR inhibitors, which are readily available to patients prescribed bortezomib, are one of the most effective therapeutics for bortezomib-induced peripheral neuropathy.


Asunto(s)
Antineoplásicos , Bortezomib , Enfermedades del Sistema Nervioso Periférico , Animales , Ratones , Antineoplásicos/efectos adversos , Bortezomib/efectos adversos , Inhibidores mTOR , Enfermedades del Sistema Nervioso Periférico/inducido químicamente , Enfermedades del Sistema Nervioso Periférico/tratamiento farmacológico , Enfermedades del Sistema Nervioso Periférico/metabolismo , Sirolimus/farmacología , Serina-Treonina Quinasas TOR/metabolismo
10.
Sci Adv ; 9(29): eadh0102, 2023 07 21.
Artículo en Inglés | MEDLINE | ID: mdl-37478173

RESUMEN

Vascular cognitive impairment (VCI) refers to cognitive alterations caused by vascular disease, which is associated with various types of dementia. Because chronic cerebral hypoperfusion (CCH) induces VCI, we used bilateral common carotid artery stenosis (BCAS) mice as a CCH-induced VCI model. Transient receptor potential ankyrin 1 (TRPA1), the most redox-sensitive TRP channel, is functionally expressed in the brain. Here, we investigated the pathophysiological role of TRPA1 in CCH-induced VCI. During early-stage CCH, cognitive impairment and white matter injury were induced by BCAS in TRPA1-knockout but not wild-type mice. TRPA1 stimulation with cinnamaldehyde ameliorated BCAS-induced outcomes. RNA sequencing analysis revealed that BCAS increased leukemia inhibitory factor (LIF) in astrocytes. Moreover, hydrogen peroxide-treated TRPA1-stimulated primary astrocyte cultures expressed LIF, and culture medium derived from these cells promoted oligodendrocyte precursor cell myelination. Overall, TRPA1 in astrocytes prevents CCH-induced VCI through LIF production. Therefore, TRPA1 stimulation may be a promising therapeutic approach for VCI.


Asunto(s)
Isquemia Encefálica , Disfunción Cognitiva , Canales de Potencial de Receptor Transitorio , Sustancia Blanca , Ratones , Animales , Astrocitos , Canal Catiónico TRPA1/genética , Factor Inhibidor de Leucemia/farmacología , Disfunción Cognitiva/complicaciones , Isquemia Encefálica/complicaciones , Modelos Animales de Enfermedad , Ratones Endogámicos C57BL
11.
Mol Neurobiol ; 60(12): 6931-6948, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37516665

RESUMEN

General anesthesia is widely used in various clinical practices due to its ability to cause loss of consciousness. However, the exact mechanism of anesthesia-induced unconsciousness remains unclear. It is generally thought that arousal-related brain nuclei are involved. 5-Hydroxytryptamine (5-HT) is closely associated with sleep arousal. Here, we explore the role of the 5-HT system in anesthetic awakening through pharmacological interventions and optogenetic techniques. Our data showed that exogenous administration of 5-hydroxytryptophan (5-HTP) and optogenetic activation of 5-HT neurons in the dorsal raphe nucleus (DR) could significantly shorten the emergence time of sevoflurane anesthesia in mice, suggesting that regulation of the 5-HT system using both endogenous and exogenous approaches could mediate delayed emergence. In addition, we first discovered that the different 5-HT receptors located in the DR, known as 5-HT autoreceptors, are essential for the regulation of general anesthetic awakening, with 5-HT1A and 5-HT2A/C receptors playing a regulatory role. These results can provide a reliable theoretical basis as well as potential targets for clinical intervention to prevent delayed emergence and some postoperative risks.


Asunto(s)
Núcleo Dorsal del Rafe , Serotonina , Animales , Ratones , Anestesia General , Neuronas , Optogenética , Receptor de Serotonina 5-HT2A
12.
Front Pharmacol ; 14: 1137952, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37021050

RESUMEN

Tendinopathy, a degenerative disease, is characterized by pain, loss of tendon strength, or rupture. Previous studies have identified multiple risk factors for tendinopathy, including aging and fluoroquinolone use; however, its therapeutic target remains unclear. We analyzed self-reported adverse events and the US commercial claims data and found that the short-term use of dexamethasone prevented both fluoroquinolone-induced and age-related tendinopathy. Rat tendons treated systemically with fluoroquinolone exhibited mechanical fragility, histological change, and DNA damage; co-treatment with dexamethasone attenuated these effects and increased the expression of the antioxidant enzyme glutathione peroxidase 3 (GPX3), as revealed via RNA-sequencing. The primary role of GPX3 was validated in primary cultured rat tenocytes treated with fluoroquinolone or H2O2, which accelerates senescence, in combination with dexamethasone or viral overexpression of GPX3. These results suggest that dexamethasone prevents tendinopathy by suppressing oxidative stress through the upregulation of GPX3. This steroid-free approach for upregulation or activation of GPX3 can serve as a novel therapeutic strategy for tendinopathy.

13.
Front Pharmacol ; 14: 1135516, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36895943

RESUMEN

Olanzapine is an atypical antipsychotic drug that is clinically applied in patients with schizophrenia. It increases the risk of dyslipidemia, a disturbance of lipid metabolic homeostasis, usually characterized by increased low-density lipoprotein (LDL) cholesterol and triglycerides, and accompanied by decreased high-density lipoprotein (HDL) in the serum. In this study, analyzing the FDA Adverse Event Reporting System, JMDC insurance claims, and electronic medical records from Nihon University School of Medicine revealed that a co-treated drug, vitamin D, can reduce the incidence of olanzapine-induced dyslipidemia. In the following experimental validations of this hypothesis, short-term oral olanzapine administration in mice caused a simultaneous increase and decrease in the levels of LDL and HDL cholesterol, respectively, while the triglyceride level remained unaffected. Cholecalciferol supplementation attenuated these deteriorations in blood lipid profiles. RNA-seq analysis was conducted on three cell types that are closely related to maintaining cholesterol metabolic balance (hepatocytes, adipocytes, and C2C12) to verify the direct effects of olanzapine and the functional metabolites of cholecalciferol (calcifediol and calcitriol). Consequently, the expression of cholesterol-biosynthesis-related genes was reduced in calcifediol- and calcitriol-treated C2C12 cells, which was likely to be mediated by activating the vitamin D receptor that subsequently inhibited the cholesterol biosynthesis process via insulin-induced gene 2 regulation. This clinical big-data-based drug repurposing approach is effective in finding a novel treatment with high clinical predictability and a well-defined molecular mechanism.

14.
Drug Saf ; 46(4): 371-389, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36828947

RESUMEN

INTRODUCTION: Adverse drug reactions (ADRs) are a leading cause of mortality worldwide and should be detected promptly to reduce health risks to patients. A data-mining approach using large-scale medical records might be a useful method for the early detection of ADRs. Many studies have analyzed medical records to detect ADRs; however, most of them have focused on a narrow range of ADRs, limiting their usefulness. OBJECTIVE: This study aimed to identify methods for the early detection of a wide range of ADR signals. METHODS: First, to evaluate the performance in signal detection of ADRs by data-mining, we attempted to create a gold standard based on clinical evidence. Second, association rule mining (ARM) was applied to patient symptoms and medications registered in claims data, followed by evaluating ADR signal detection performance. RESULTS: We created a new gold standard consisting of 92 positive and 88 negative controls. In the assessment of ARM using claims data, the areas under the receiver-operating characteristic curve and the precision-recall curve were 0.80 and 0.83, respectively. If the detection criteria were defined as lift > 1, conviction > 1, and p-value < 0.05, ARM could identify 156 signals, of which 90 were true positive controls (sensitivity: 0.98, specificity: 0.25). Evaluation of the capability of ARM with short periods of data revealed that ARM could detect a greater number of positive controls than the conventional analysis method. CONCLUSIONS: ARM of claims data may be effective in the early detection of a wide range of ADR signals.


Asunto(s)
Sistemas de Registro de Reacción Adversa a Medicamentos , Efectos Colaterales y Reacciones Adversas Relacionados con Medicamentos , Humanos , Efectos Colaterales y Reacciones Adversas Relacionados con Medicamentos/diagnóstico , Efectos Colaterales y Reacciones Adversas Relacionados con Medicamentos/epidemiología , Registros Médicos , Curva ROC , Minería de Datos/métodos
15.
Cell Rep ; 42(3): 112149, 2023 03 28.
Artículo en Inglés | MEDLINE | ID: mdl-36821440

RESUMEN

Major depressive disorder (MDD) is among the most common mental illnesses. Serotonergic (5-HT) neurons are central to the pathophysiology and treatment of MDD. Repeatedly recalling positive episodes is effective for MDD. Stimulating 5-HT neurons of the dorsal raphe nucleus (DRN) or neuronal ensembles in the dorsal dentate gyrus (dDG) associated with positive memories reverses the stress-induced behavioral abnormalities. Despite this phenotypic similarity, their causal relationship is unclear. This study revealed that the DRN 5-HT neurons activate dDG neurons; surprisingly, this activation was specifically observed in positive memory ensembles rather than neutral or negative ensembles. Furthermore, we revealed that dopaminergic signaling induced by activation of DRN 5-HT neurons projecting to the ventral tegmental area mediates an increase in active coping behavior and positive dDG ensemble reactivation. Our study identifies a role of DRN 5-HT neurons as specific reactivators of positive memories and provides insights into how serotonin elicits antidepressive effects.


Asunto(s)
Trastorno Depresivo Mayor , Núcleo Dorsal del Rafe , Humanos , Neuronas Serotoninérgicas , Serotonina/farmacología , Giro Dentado
16.
Int J Mol Sci ; 24(4)2023 Feb 09.
Artículo en Inglés | MEDLINE | ID: mdl-36834875

RESUMEN

Abnormalities in the peripheral immune system are involved in the pathophysiology of fibromyalgia, although their contribution to the painful symptoms remains unknown. Our previous study reported the ability of splenocytes to develop pain-like behavior and an association between the central nervous system (CNS) and splenocytes. Since the spleen is directly innervated by sympathetic nerves, this study aimed to examine whether adrenergic receptors are necessary for pain development or maintenance using an acid saline-induced generalized pain (AcGP) model (an experimental model of fibromyalgia) and whether the activation of these receptors is also essential for pain reproduction by the adoptive transfer of AcGP splenocytes. The administration of selective ß2-blockers, including one with only peripheral action, prevented the development but did not reverse the maintenance of pain-like behavior in acid saline-treated C57BL/6J mice. Neither a selective α1-blocker nor an anticholinergic drug affects the development of pain-like behavior. Furthermore, ß2-blockade in donor AcGP mice eliminated pain reproduction in recipient mice injected with AcGP splenocytes. These results suggest that peripheral ß2-adrenergic receptors play an important role in the efferent pathway from the CNS to splenocytes in pain development.


Asunto(s)
Fibromialgia , Receptores Adrenérgicos beta 2 , Ratones , Animales , Receptores Adrenérgicos beta 2/metabolismo , Fibromialgia/metabolismo , Bazo/metabolismo , Ratones Endogámicos C57BL , Receptores Adrenérgicos/metabolismo , Dolor/metabolismo , Sistema Nervioso Central/metabolismo , Sistema Nervioso Simpático/metabolismo , Receptores Adrenérgicos beta/metabolismo , Antagonistas Adrenérgicos beta/farmacología
17.
Biol Pharm Bull ; 46(1): 102-110, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36596518

RESUMEN

Peripheral neuropathy is one of the major adverse effects that limit the clinical application of bortezomib (BTZ). However, the underlying mechanisms of BTZ-induced peripheral neuropathy (BIPN) remain elusive. To examine cell types potentially involved in the development of BIPN, we used four purified cultures of cells of the peripheral nervous system: Schwann cells (SCs), satellite glial cells (SGCs), macrophages, and dorsal root ganglion (DRG) neurons. Administration of a low BTZ concentration (5 nM; similar to concentrations in clinical use) caused dedifferentiation of cultured SCs, returning mature SCs to an immature state. In cultured SGCs, BTZ increased glial fibrillary acidic protein (GFAP) levels without inducing the release of inflammatory cytokines or chemokines. In macrophages, BTZ caused little inflammatory response. Finally, in DRG neurons, BTZ strongly suppressed the expression levels of sensor and transducer ion channels without affecting cell morphology. Taken together, low concentrations of BTZ can cause SC dedifferentiation (i.e., demyelination), increased GFAP level in SGC, and decreased expression levels of sensor and transducer ion channels in DRG neurons (i.e., numbness feeling). Thus, we have reported, for the first time, specific effects of BTZ on peripheral nervous system cells, thereby contributing to a better understanding of the initiating mechanism of BIPN.


Asunto(s)
Ganglios Espinales , Enfermedades del Sistema Nervioso Periférico , Humanos , Bortezomib/efectos adversos , Ganglios Espinales/metabolismo , Neuronas , Neuroglía/metabolismo , Células de Schwann/metabolismo , Enfermedades del Sistema Nervioso Periférico/inducido químicamente , Macrófagos/metabolismo , Canales Iónicos
18.
J Pharmacol Sci ; 151(1): 9-16, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36522124

RESUMEN

Tardive akathisia is a movement disorder characterized by internal restlessness with an uncontrollable urge to move, leading to repetitive movements. It is a common side effect of long-term treatment with dopamine D2 receptor antagonists. In the present study, we analyzed the FDA Adverse Event Reporting System and IBM MarketScan Research Database to find a drug that can be used concomitantly with dopamine D2 receptor antagonists and still reduce the risk of akathisia. Acetaminophen was determined to be the most effective akathisia-suppressing drug. In an experimental validation of the hypothesis, chronic treatment of rats with haloperidol caused akathisia symptoms, including increased stereotyped behavior and locomotor activity, and decreased immobility time. Acute treatment with acetaminophen significantly attenuated haloperidol-induced akathisia. In the ventral striata of these rats, acetaminophen prevented haloperidol-induced decrease in the number of c-Fos+ preproenkephalin+ neurons. These results suggest that acetaminophen is effective in suppressing tardive akathisia by activating indirect-pathway medium spiny neurons.


Asunto(s)
Acatisia Inducida por Medicamentos , Antipsicóticos , Animales , Ratas , Acatisia Inducida por Medicamentos/tratamiento farmacológico , Acatisia Inducida por Medicamentos/etiología , Acatisia Inducida por Medicamentos/prevención & control , Haloperidol/efectos adversos , Dopamina , Acetaminofén/efectos adversos , Agitación Psicomotora/etiología , Agitación Psicomotora/complicaciones , Antagonistas de los Receptores de Dopamina D2 , Antipsicóticos/efectos adversos
19.
Nat Commun ; 13(1): 7708, 2022 12 22.
Artículo en Inglés | MEDLINE | ID: mdl-36550097

RESUMEN

Appropriate processing of reward and aversive information is essential for survival. Although a critical role of serotonergic neurons in the dorsal raphe nucleus (DRN) in reward processing has been shown, the lack of rewarding effects with selective serotonin reuptake inhibitors (SSRIs) implies the presence of a discrete serotonergic system playing an opposite role to the DRN in the processing of reward and aversive stimuli. Here, we demonstrated that serotonergic neurons in the median raphe nucleus (MRN) of mice process reward and aversive information in opposite directions to DRN serotonergic neurons. We further identified MRN serotonergic neurons, including those projecting to the interpeduncular nucleus (5-HTMRN→IPN), as a key mediator of reward and aversive stimuli. Moreover, 5-HT receptors, including 5-HT2A receptors in the interpeduncular nucleus, are involved in the aversive properties of MRN serotonergic neural activity. Our findings revealed an essential function of MRN serotonergic neurons, including 5-HTMRN→IPN, in the processing of reward and aversive stimuli.


Asunto(s)
Núcleo Interpeduncular , Neuronas Serotoninérgicas , Ratones , Animales , Serotonina/fisiología , Núcleo Dorsal del Rafe/fisiología , Receptores de Serotonina
20.
iScience ; 25(10): 105228, 2022 Oct 21.
Artículo en Inglés | MEDLINE | ID: mdl-36267919

RESUMEN

Sudden unexpected death in epilepsy (SUDEP) is the leading cause of death among patients with epilepsy. However, the underlying mechanism of SUDEP remains elusive. Previous studies showed seizure-induced respiratory arrest (S-IRA) is the main factor in SUDEP, and that enhancement of serotonin (5-HT) function in the dorsal raphe nucleus (DR) can significantly reduce the incidence of S-IRA in the DBA/1 mouse model of SUDEP. The pre-Bötzinger complex (PBC), known for its role in regulating respiratory rhythm, can express the 5-HT2A receptor (5-HT2AR). Here, using the pharmacological and optogenetic methods, respectively, we observed that the serotonergic neural circuit between DR and PBC was involved in S-IRA evoked by either acoustic stimulation or pentylenetetrazole (PTZ) injection in the DBA/1 mice, and found 5-HT2AR located in PBC plays an important role in it. Our findings will further significantly improve our understanding of SUDEP and provide a promising therapeutic target for SUDEP prevention.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA