Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 122
Filtrar
Más filtros

Base de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
NPJ Breast Cancer ; 10(1): 42, 2024 Jun 08.
Artículo en Inglés | MEDLINE | ID: mdl-38851818

RESUMEN

The ESR1 ligand binding domain activating mutations are the most prevalent genetic mechanism of acquired endocrine resistance in metastatic hormone receptor-positive breast cancer. These mutations confer endocrine resistance that remains estrogen receptor (ER) dependent. We hypothesized that in the presence of the ER mutations, continued ER blockade with endocrine therapies that target mutant ER is essential for tumor suppression even with chemotherapy treatment. Here, we conducted comprehensive pre-clinical in vitro and in vivo experiments testing the efficacy of adding fulvestrant to fluorouracil (5FU) and the 5FU pro-drug, capecitabine, in models of wild-type (WT) and mutant ER. Our findings revealed that while this combination had an additive effect in the presence of WT-ER, in the presence of the Y537S ER mutation there was synergy. Notably, these effects were not seen with the combination of 5FU and selective estrogen receptor modulators, such as tamoxifen, or in the absence of intact P53. Likewise, in a patient-derived xenograft (PDX) harboring a Y537S ER mutation the addition of fulvestrant to capecitabine potentiated tumor suppression. Moreover, multiplex immunofluorescence revealed that this effect was due to decreased cell proliferation in all cells expressing ER and was not dependent on the degree of ER expression. Taken together, these results support the clinical investigation of the combination of ER antagonists with capecitabine in patients with metastatic hormone receptor-positive breast cancer who have experienced progression on endocrine therapy and targeted therapies, particularly in the presence of an ESR1 activating mutation.

2.
Am J Obstet Gynecol ; 2024 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-38908650

RESUMEN

OBJECTIVE: To investigate the association between actual and planned modes of delivery, neonatal mortality, and short-term outcomes among preterm pregnancies ≤32 weeks of gestation. DATA SOURCES: A systematic literature search was conducted in three main databases (PubMed, EMBASE, and the Cochrane Central Register of Controlled Trials (CENTRAL) from inception to November 16, 2022. The protocol was registered in advance in the International Prospective Register of Systematic Reviews (CRD42022377870). STUDY ELIGIBILITY CRITERIA: Eligible studies examined pregnancies ≤ 32nd gestational week. All infants received active care, and the outcomes were reported separately by different modes of delivery. Singleton and twin pregnancies at vertex and breech presentations were included. Studies that included pregnancies complicated with preeclampsia and abruptio placentae were excluded. Primary outcomes were neonatal mortality and intraventricular hemorrhage. STUDY APPRAISAL AND SYNTHESIS METHODS: Articles were selected by title, abstract, and full text, and disagreements were resolved by consensus. Random effects model-based odds ratios with corresponding 95% confidence intervals were calculated for dichotomous outcomes. ROBINS-I was used to assess the risk of bias. RESULTS: A total of nineteen observational studies were included involving a total of 16,042 preterm infants in this systematic review and meta-analysis. Actual cesarean delivery improves survival (odds ratio, 0.62; 95% confidence interval, 0.42 to 0.9) and decreases the incidence of intraventricular hemorrhage (odds ratio, 0.70; confidence interval, 0.57 to 0.85) compared to vaginal delivery. Planned cesarean delivery does not improve the survival of very and extremely preterm infants compared to vaginal delivery (odds ratio, 0.87; 95% confidence interval, 0.53 to 1.44). Subset analysis found significantly lower odds of death for singleton breech preterm deliveries born by both planned (odds ratio, 0.56; 95% confidence interval, 0.32 to 0.98) and actual (odds ratio, 0.34; 95% confidence interval, 0.13 to 0.88) cesarean delivery. CONCLUSION: Cesarean delivery should be the mode of delivery for preterm ≤32 weeks of gestation breech births due to the higher mortality in preterm infants born via vaginal delivery.

3.
Pharmaceutics ; 16(3)2024 Mar 04.
Artículo en Inglés | MEDLINE | ID: mdl-38543252

RESUMEN

Population pharmacokinetic (pop-PK) models constructed for model-informed precision dosing often have limited utility due to the low number of patients recruited. To augment such models, an approach is presented for generating fully artificial quasi-models which can be employed to make individual estimates of pharmacokinetic parameters. Based on 72 concentrations obtained in 12 patients, one- and two-compartment pop-PK models with or without creatinine clearance as a covariate were generated for piperacillin using the nonparametric adaptive grid algorithm. Thirty quasi-models were subsequently generated for each model type, and nonparametric maximum a posteriori probability Bayesian estimates were established for each patient. A significant difference in performance was found between one- and two-compartment models. Acceptable agreement was found between predicted and observed piperacillin concentrations, and between the estimates of the random-effect pharmacokinetic variables obtained using the so-called support points of the pop-PK models or the quasi-models as priors. The mean squared errors of the predictions made using the quasi-models were similar to, or even considerably lower than those obtained when employing the pop-PK models. Conclusion: fully artificial nonparametric quasi-models can efficiently augment pop-PK models containing few support points, to make individual pharmacokinetic estimates in the clinical setting.

4.
Clin Cancer Res ; 30(9): 1889-1905, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38381406

RESUMEN

PURPOSE: Resistance to endocrine therapy (ET) and CDK4/6 inhibitors (CDK4/6i) is a clinical challenge in estrogen receptor (ER)-positive (ER+) breast cancer. Cyclin-dependent kinase 7 (CDK7) is a candidate target in endocrine-resistant ER+ breast cancer models and selective CDK7 inhibitors (CDK7i) are in clinical development for the treatment of ER+ breast cancer. Nonetheless, the precise mechanisms responsible for the activity of CDK7i in ER+ breast cancer remain elusive. Herein, we sought to unravel these mechanisms. EXPERIMENTAL DESIGN: We conducted multi-omic analyses in ER+ breast cancer models in vitro and in vivo, including models with different genetic backgrounds. We also performed genome-wide CRISPR/Cas9 knockout screens to identify potential therapeutic vulnerabilities in CDK4/6i-resistant models. RESULTS: We found that the on-target antitumor effects of CDK7 inhibition in ER+ breast cancer are in part p53 dependent, and involve cell cycle inhibition and suppression of c-Myc. Moreover, CDK7 inhibition exhibited cytotoxic effects, distinctive from the cytostatic nature of ET and CDK4/6i. CDK7 inhibition resulted in suppression of ER phosphorylation at S118; however, long-term CDK7 inhibition resulted in increased ER signaling, supporting the combination of ET with a CDK7i. Finally, genome-wide CRISPR/Cas9 knockout screens identified CDK7 and MYC signaling as putative vulnerabilities in CDK4/6i resistance, and CDK7 inhibition effectively inhibited CDK4/6i-resistant models. CONCLUSIONS: Taken together, these findings support the clinical investigation of selective CDK7 inhibition combined with ET to overcome treatment resistance in ER+ breast cancer. In addition, our study highlights the potential of increased c-Myc activity and intact p53 as predictors of sensitivity to CDK7i-based treatments.


Asunto(s)
Apoptosis , Neoplasias de la Mama , Ciclo Celular , Quinasa Activadora de Quinasas Ciclina-Dependientes , Quinasas Ciclina-Dependientes , Resistencia a Antineoplásicos , Inhibidores de Proteínas Quinasas , Proteínas Proto-Oncogénicas c-myc , Receptores de Estrógenos , Transducción de Señal , Humanos , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/patología , Neoplasias de la Mama/genética , Neoplasias de la Mama/metabolismo , Femenino , Resistencia a Antineoplásicos/genética , Apoptosis/efectos de los fármacos , Animales , Ratones , Receptores de Estrógenos/metabolismo , Quinasas Ciclina-Dependientes/antagonistas & inhibidores , Quinasas Ciclina-Dependientes/metabolismo , Quinasas Ciclina-Dependientes/genética , Proteínas Proto-Oncogénicas c-myc/metabolismo , Proteínas Proto-Oncogénicas c-myc/genética , Inhibidores de Proteínas Quinasas/farmacología , Inhibidores de Proteínas Quinasas/uso terapéutico , Transducción de Señal/efectos de los fármacos , Ciclo Celular/efectos de los fármacos , Ensayos Antitumor por Modelo de Xenoinjerto , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Quinasa 4 Dependiente de la Ciclina/antagonistas & inhibidores , Quinasa 4 Dependiente de la Ciclina/genética , Sistemas CRISPR-Cas
5.
Cells ; 12(18)2023 09 06.
Artículo en Inglés | MEDLINE | ID: mdl-37759442

RESUMEN

Genome stability in human cells relies on the efficient repair of double-stranded DNA breaks, which is mainly achieved by homologous recombination (HR). Among the regulators of various cellular functions, Protein phosphatase 4 (PP4) plays a pivotal role in coordinating cellular response to DNA damage. Meanwhile, Centrobin (CNTRB), initially recognized for its association with centrosomal function and microtubule dynamics, has sparked interest due to its potential contribution to DNA repair processes. In this study, we investigate the involvement of PP4 and its interaction with CNTRB in HR-mediated DNA repair in human cells. Employing a range of experimental strategies, we investigate the physical interaction between PP4 and CNTRB and shed light on the importance of two specific motifs in CNTRB, the PP4-binding FRVP and the ATR kinase recognition SQ sequences, in the DNA repair process. Moreover, we examine cells depleted of PP4 or CNTRB and cells harboring FRVP and SQ mutations in CNTRB, which result in similar abnormal chromosome morphologies. This phenomenon likely results from the impaired resolution of Holliday junctions, which serve as crucial intermediates in HR. Taken together, our results provide new insights into the intricate mechanisms of PP4 and CNTRB-regulated HR repair and their interrelation.


Asunto(s)
Reparación del ADN , Fosfoproteínas Fosfatasas , Humanos , Fosfoproteínas Fosfatasas/genética , Reparación del ADN por Recombinación , Daño del ADN
6.
Cancer Res ; 83(19): 3284-3304, 2023 10 02.
Artículo en Inglés | MEDLINE | ID: mdl-37450351

RESUMEN

Immunotherapies have yet to demonstrate significant efficacy in the treatment of hormone receptor-positive (HR+) breast cancer. Given that endocrine therapy (ET) is the primary approach for treating HR+ breast cancer, we investigated the effects of ET on the tumor immune microenvironment (TME) in HR+ breast cancer. Spatial proteomics of primary HR+ breast cancer samples obtained at baseline and after ET from patients enrolled in a neoadjuvant clinical trial (NCT02764541) indicated that ET upregulated ß2-microglobulin and influenced the TME in a manner that promotes enhanced immunogenicity. To gain a deeper understanding of the underlying mechanisms, the intrinsic effects of ET on cancer cells were explored, which revealed that ET plays a crucial role in facilitating the chromatin binding of RelA, a key component of the NF-κB complex. Consequently, heightened NF-κB signaling enhanced the response to interferon-gamma, leading to the upregulation of ß2-microglobulin and other antigen presentation-related genes. Further, modulation of NF-κB signaling using a SMAC mimetic in conjunction with ET augmented T-cell migration and enhanced MHC-I-specific T-cell-mediated cytotoxicity. Remarkably, the combination of ET and SMAC mimetics, which also blocks prosurvival effects of NF-κB signaling through the degradation of inhibitors of apoptosis proteins, elicited tumor regression through cell autonomous mechanisms, providing additional support for their combined use in HR+ breast cancer. SIGNIFICANCE: Adding SMAC mimetics to endocrine therapy enhances tumor regression in a cell autonomous manner while increasing tumor immunogenicity, indicating that this combination could be an effective treatment for HR+ patients with breast cancer.


Asunto(s)
Neoplasias de la Mama , FN-kappa B , Humanos , Femenino , FN-kappa B/metabolismo , Péptidos y Proteínas de Señalización Intracelular , Neoplasias de la Mama/patología , Presentación de Antígeno , Proteínas Reguladoras de la Apoptosis , Apoptosis , Línea Celular Tumoral , Proteínas Mitocondriales/metabolismo , Microambiente Tumoral
8.
Front Oncol ; 13: 1155540, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36950546

RESUMEN

[This corrects the article DOI: 10.3389/fonc.2022.1037531.].

9.
Int J Mol Sci ; 24(3)2023 Jan 19.
Artículo en Inglés | MEDLINE | ID: mdl-36768356

RESUMEN

The conserved Ser/Thr protein phosphatase 5 (PP5) is involved in the regulation of key cellular processes, including DNA damage repair and cell division in eukaryotes. As a co-chaperone of Hsp90, PP5 has been shown to modulate the maturation and activity of numerous oncogenic kinases. Here, we identify a novel substrate of PP5, the Polo-like kinase 4 (Plk4), which is the master regulator of centriole duplication in animal cells. We show that PP5 specifically interacts with Plk4, and is able to dephosphorylate the kinase in vitro and in vivo, which affects the interaction of Plk4 with its partner proteins. In addition, we provide evidence that PP5 and Plk4 co-localize to the centrosomes in Drosophila embryos and cultured cells. We demonstrate that PP5 is not essential; the null mutant flies are viable without a severe mitotic phenotype; however, its loss significantly reduces the fertility of the animals. Our results suggest that PP5 is a novel regulator of the Plk4 kinase in Drosophila.


Asunto(s)
Centriolos , Centrosoma , Animales , Centriolos/metabolismo , Centrosoma/metabolismo , Fosfoproteínas Fosfatasas/genética , Fosfoproteínas Fosfatasas/metabolismo , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Drosophila/genética , Drosophila/metabolismo
10.
Int J Cancer ; 152(7): 1399-1413, 2023 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-36346110

RESUMEN

The mitochondrion is a gatekeeper of apoptotic processes, and mediates drug resistance to several chemotherapy agents used to treat cancer. Neuroblastoma is a common solid cancer in young children with poor clinical outcomes following conventional chemotherapy. We sought druggable mitochondrial protein targets in neuroblastoma cells. Among mitochondria-associated gene targets, we found that high expression of the mitochondrial adenine nucleotide translocase 2 (SLC25A5/ANT2), was a strong predictor of poor neuroblastoma patient prognosis and contributed to a more malignant phenotype in pre-clinical models. Inhibiting this transporter with PENAO reduced cell viability in a panel of neuroblastoma cell lines in a TP53-status-dependant manner. We identified the histone deacetylase inhibitor, suberanilohydroxamic acid (SAHA), as the most effective drug in clinical use against mutant TP53 neuroblastoma cells. SAHA and PENAO synergistically reduced cell viability, and induced apoptosis, in neuroblastoma cells independent of TP53-status. The SAHA and PENAO drug combination significantly delayed tumour progression in pre-clinical neuroblastoma mouse models, suggesting that these clinically advanced inhibitors may be effective in treating the disease.


Asunto(s)
Translocador 2 del Nucleótido Adenina , Antineoplásicos , Inhibidores de Histona Desacetilasas , Ácidos Hidroxámicos , Neuroblastoma , Animales , Ratones , Antineoplásicos/farmacología , Apoptosis , Línea Celular Tumoral , Inhibidores de Histona Desacetilasas/farmacología , Histonas/metabolismo , Ácidos Hidroxámicos/uso terapéutico , Mitocondrias/metabolismo , Neuroblastoma/tratamiento farmacológico , Vorinostat/farmacología , Translocador 2 del Nucleótido Adenina/antagonistas & inhibidores
11.
Front Endocrinol (Lausanne) ; 13: 993228, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36387875

RESUMEN

The hypothalamic gonadotropin-releasing hormone (GnRH)-kisspeptin neuronal network regulates fertility in all mammals. Pituitary adenylate cyclase-activating polypeptide (PACAP) is a neuropeptide isolated from the hypothalamus that is involved in the regulation of several releasing hormones and trop hormones. It is well-known that PACAP influences fertility at central and peripheral levels. However, the effects of PACAP on GnRH and kisspeptin neurons are not well understood. The present study investigated the integrity of the estrous cycle in PACAP-knockout (KO) mice. The number and immunoreactivity of GnRH (GnRH-ir) neurons in wild-type (WT) and PACAP KO female mice were determined using immunohistochemistry. In addition, the number of kisspeptin neurons was measured by counting kisspeptin mRNA-positive cells in the rostral periventricular region of the third ventricle (RP3V) and arcuate nucleus (ARC) using the RNAscope technique. Finally, the mRNA and protein expression of estrogen receptor alpha (ERα) was also examined. Our data showed that the number of complete cycles decreased, and the length of each cycle was longer in PACAP KO mice. Furthermore, the PACAP KO mice experienced longer periods of diestrus and spent significantly less time in estrus. There was no difference in GnRH-ir or number of GnRH neurons. In contrast, the number of kisspeptin neurons was decreased in the ARC, but not in the R3PV, in PACAP KO mice compared to WT littermates. Furthermore, ERα mRNA and protein expression was decreased in the ARC, whereas in the R3PV region, ERα mRNA levels were elevated. Our results demonstrate that embryonic deletion of PACAP significantly changes the structure and presumably the function of the GnRH-kisspeptin neuronal network, influencing fertility.


Asunto(s)
Hormona Liberadora de Gonadotropina , Kisspeptinas , Animales , Femenino , Ratones , Receptor alfa de Estrógeno/metabolismo , Hormona Liberadora de Gonadotropina/genética , Hormona Liberadora de Gonadotropina/metabolismo , Kisspeptinas/genética , Kisspeptinas/metabolismo , Ratones Noqueados , Neuronas/metabolismo , Polipéptido Hipofisario Activador de la Adenilato-Ciclasa/genética , ARN Mensajero/metabolismo
12.
Front Endocrinol (Lausanne) ; 13: 974788, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36387878

RESUMEN

Observations of women and clinicians indicated that the prevalence of menstrual cycle problems has escalated during the COVID-19 pandemic. However, it was not clear whether the observed menstrual cycle changes were related to vaccination, the disease itself or the COVID-19 pandemic-induced psychological alterations. To systematically analyze this question, we conducted a human online survey in women aged between 18 and 65 in Hungary. The menstrual cycle of 1563 individuals were analyzed in our study in relation to the COVID-19 vaccination, the COVID-19 infection, the pandemic itself and the mental health. We found no association between the COVID-19 vaccination, the vaccine types or the COVID-19 infection and the menstrual cycle changes. We also evaluated the menstrual cycle alterations focusing on three parameters of the menstrual cycle including the cycle length, the menses length and the cycle regularity in three pandemic phases: the pre-peak, the peak and the post-peak period in Hungary. Our finding was that the length of the menstrual cycle did not change in any of the periods. However, the menses length increased, while the regularity of the menstrual cycle decreased significantly during the peak of the COVID-19 pandemic when comparing to the pre- and post-peak periods. In addition, we exhibited that the length and the regularity of the menstrual cycle both correlated with the severity of depression during the post-peak period, therefore we concluded that the reported menstrual cycle abnormalities during the peak of COVID-19 in Hungary might be the result of elevated depressive symptoms.


Asunto(s)
COVID-19 , Humanos , Femenino , Adolescente , Adulto Joven , Adulto , Persona de Mediana Edad , Anciano , Estudios Retrospectivos , COVID-19/epidemiología , COVID-19/prevención & control , Pandemias , Hungría/epidemiología , Vacunas contra la COVID-19 , Ciclo Menstrual/psicología , Vacunación
13.
Front Endocrinol (Lausanne) ; 13: 982551, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36204113

RESUMEN

Pituitary adenylate cyclase activating polypeptide (PACAP) is a neuropeptide originally isolated as a hypothalamic peptide. It has a widespread distribution in the body and has a diverse spectrum of actions. Among other processes, PACAP has been shown to be involved in reproduction. In this review we summarize findings related to the entire spectrum of female reproduction. PACAP is a regulatory factor in gonadal hormone production, influences follicular development and plays a role in fertilization and embryonic/placental development. Furthermore, PACAP is involved in hormonal changes during and after birth and affects maternal behavior. Although most data come from cell cultures and animal experiments, increasing number of evidence suggests that similar effects of PACAP can be found in humans. Among other instances, PACAP levels show changes in the serum during pregnancy and birth. PACAP is also present in the human follicular and amniotic fluids and in the milk. Levels of PACAP in follicular fluid correlate with the number of retrieved oocytes in hyperstimulated women. Human milk contains very high levels of PACAP compared to plasma levels, with colostrum showing the highest concentration, remaining steady thereafter for the first 7 months of lactation. All these data imply that PACAP has important functions in reproduction both under physiological and pathological conditions.


Asunto(s)
Polipéptido Hipofisario Activador de la Adenilato-Ciclasa , Placenta , Animales , Femenino , Desarrollo Fetal , Líquido Folicular , Gónadas , Humanos , Polipéptido Hipofisario Activador de la Adenilato-Ciclasa/fisiología , Embarazo
14.
Front Pharmacol ; 13: 983853, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36110516

RESUMEN

Background: Acute and chronic neurodegenerative diseases represent an immense socioeconomic burden that drives the need for new disease modifying drugs. Common pathogenic mechanisms in these diseases are evident, suggesting that a platform neuroprotective therapy may offer effective treatments. Here we present evidence for the mode of pharmacological action of a novel neuroprotective low molecular weight dextran sulphate drug called ILB®. The working hypothesis was that ILB® acts via the activation of heparin-binding growth factors (HBGF). Methods: Pre-clinical and clinical (healthy people and patients with ALS) in vitro and in vivo studies evaluated the mode of action of ILB®. In vitro binding studies, functional assays and gene expression analyses were followed by the assessment of the drug effects in an animal model of severe traumatic brain injury (sTBI) using gene expression studies followed by functional analysis. Clinical data, to assess the hypothesized mode of action, are also presented from early phase clinical trials. Results: ILB® lengthened APTT time, acted as a competitive inhibitor for HGF-Glypican-3 binding, effected pulse release of heparin-binding growth factors (HBGF) into the circulation and modulated growth factor signaling pathways. Gene expression analysis demonstrated substantial similarities in the functional dysregulation induced by sTBI and various human neurodegenerative conditions and supported a cascading effect of ILB® on growth factor activation, followed by gene expression changes with profound beneficial effect on molecular and cellular functions affected by these diseases. The transcriptional signature of ILB® relevant to cell survival, inflammation, glutamate signaling, metabolism and synaptogenesis, are consistent with the activation of neuroprotective growth factors as was the ability of ILB® to elevate circulating levels of HGF in animal models and humans. Conclusion: ILB® releases, redistributes and modulates the bioactivity of HBGF that target disease compromised nervous tissues to initiate a cascade of transcriptional, metabolic and immunological effects that control glutamate toxicity, normalize tissue bioenergetics, and resolve inflammation to improve tissue function. This unique mechanism of action mobilizes and modulates naturally occurring tissue repair mechanisms to restore cellular homeostasis and function. The identified pharmacological impact of ILB® supports the potential to treat various acute and chronic neurodegenerative disease, including sTBI and ALS.

15.
FEBS Open Bio ; 12(11): 1988-1995, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36102272

RESUMEN

Over the past few decades, dozens of in vitro methods have been developed to map, investigate and validate protein-protein interactions. However, most of these approaches are time-consuming and labour-intensive or require specialised equipment or substantial amounts of purified proteins. Here, we describe a fast and versatile research protocol that is suitable for the in vitro analysis of the physical interaction between proteins or for mapping the binding surfaces. The principle of this method is based on the immobilisation of the protein/domain of interest to a carrier followed by its incubation with a labelled putative binding partner, which is generated by a coupled in vitro transcription/translation reaction. Interacting proteins are removed from the carrier, fractionated and visualised by SDS/PAGE autoradiography (or western blotting). This simple and cheap method can be easily carried out in every wet lab.


Asunto(s)
Proteínas , Electroforesis en Gel de Poliacrilamida
16.
Front Mol Biosci ; 9: 963635, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36060241

RESUMEN

Actin, as an ancient and fundamental protein, participates in various cytoplasmic as well as nuclear functions in eukaryotic cells. Based on its manifold tasks in the nucleus, it is a reasonable assumption that the nuclear presence of actin is essential for the cell, and consequently, its nuclear localization is ensured by a robust system. However, today only a single nuclear import and a single nuclear export pathway is known which maintain the dynamic balance between cytoplasmic and nuclear actin pools. In our work, we tested the robustness of the nuclear import of actin, and investigated whether the perturbations of nuclear localization affect the viability of the whole organism. For this aim, we generated a genetic system in Drosophila, in which we rescued the lethal phenotype of the null mutation of the Actin5C gene with transgenes that express different derivatives of actin, including a Nuclear Export Signal (NES)-tagged isoform which ensures forced nuclear export of the protein. We also disrupted the SUMOylation site of actin, suggested earlier to be responsible for nuclear retention, and eliminated the activity of the single nuclear import factor dedicated to actin. We found that, individually, none of the above mentioned manipulations led to a notable reduction in nuclear actin levels and thus, fully rescued lethality. However, the NES tagging of actin, together with the knock out of its importin, significantly reduced the amount of nuclear actin and induced lethality, confirming that the presence of actin in the nucleus is essential, and thereby, over-secured. Supporting this, we identified novel nuclear importins specific to actin, which sheds light on the mechanism behind the robustness of nuclear localization of actin, and supports the idea of essentiality of its nuclear functions.

17.
Front Immunol ; 13: 919411, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36119109

RESUMEN

Here, we present the findings of an investigation involving two male siblings with juvenile total tooth loss, early-onset chronic leg ulcers, and autoimmune thyroiditis, as well as focal segmental glomerulosclerosis with associated pulmonary emphysema in one and diabetes mellitus in the other. The clinical picture and lupus anticoagulant, cryoglobulin, and cold agglutinin positivity suggested the diagnosis of antiphospholipid syndrome. Flow cytometry analysis showed immunophenotypes consistent with immune dysregulation: a low number of naive T cells, elevated CD4+ T cell counts, and decreased CD8+ T-cell counts were detected, and more than half of the T-helper population was activated. Considering the siblings' almost identical clinical phenotype, the genetic alteration was suspected in the background of the immunodeficiency. Whole exome sequencing identified a previously not described hemizygous nonsense variant (c.650G>A, p.W217X) within exon 6 of the moesin (MSN) gene localized on chromosome X, resulting in significantly decreased MSN mRNA expression compared to healthy controls. We present a putative new autoimmune phenotype of Immunodeficiency 50 (MIM300988) characterized by antiphospholipid syndrome, Hashimoto's thyroiditis, leg ulcers, and juvenile tooth loss, associated with W217X mutation of the MSN gene.


Asunto(s)
Síndrome Antifosfolípido , Enfermedad de Hashimoto , Pérdida de Diente , Crioglobulinas , Enfermedad de Hashimoto/genética , Humanos , Inhibidor de Coagulación del Lupus , Masculino , Proteínas de Microfilamentos , Fenotipo , ARN Mensajero
18.
Cancer Res ; 82(20): 3673-3686, 2022 10 17.
Artículo en Inglés | MEDLINE | ID: mdl-35950920

RESUMEN

Most invasive lobular breast cancers (ILC) are of the luminal A subtype and are strongly hormone receptor-positive. Yet, ILC is relatively resistant to tamoxifen and associated with inferior long-term outcomes compared with invasive ductal cancers (IDC). In this study, we sought to gain mechanistic insights into these clinical findings that are not explained by the genetic landscape of ILC and to identify strategies to improve patient outcomes. A comprehensive analysis of the epigenome of ILC in preclinical models and clinical samples showed that, compared with IDC, ILC harbored a distinct chromatin state linked to gained recruitment of FOXA1, a lineage-defining pioneer transcription factor. This resulted in an ILC-unique FOXA1-estrogen receptor (ER) axis that promoted the transcription of genes associated with tumor progression and poor outcomes. The ILC-unique FOXA1-ER axis led to retained ER chromatin binding after tamoxifen treatment, which facilitated tamoxifen resistance while remaining strongly dependent on ER signaling. Mechanistically, gained FOXA1 binding was associated with the autoinduction of FOXA1 in ILC through an ILC-unique FOXA1 binding site. Targeted silencing of this regulatory site resulted in the disruption of the feed-forward loop and growth inhibition in ILC. In summary, ILC is characterized by a unique chromatin state and FOXA1-ER axis that is associated with tumor progression, offering a novel mechanism of tamoxifen resistance. These results underscore the importance of conducting clinical trials dedicated to patients with ILC in order to optimize treatments in this breast cancer subtype. SIGNIFICANCE: A unique FOXA1-ER axis in invasive lobular breast cancer promotes disease progression and tamoxifen resistance, highlighting a potential therapeutic avenue for clinical investigations dedicated to this disease. See related commentary by Blawski and Toska, p. 3668.


Asunto(s)
Neoplasias de la Mama , Carcinoma Ductal de Mama , Carcinoma Lobular , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/genética , Neoplasias de la Mama/patología , Carcinoma Ductal de Mama/patología , Carcinoma Lobular/tratamiento farmacológico , Carcinoma Lobular/genética , Carcinoma Lobular/metabolismo , Cromatina/genética , Resistencia a Antineoplásicos/genética , Femenino , Humanos , Pronóstico , Receptores de Estrógenos/metabolismo , Tamoxifeno/farmacología , Tamoxifeno/uso terapéutico
19.
Int J Mol Sci ; 23(15)2022 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-35955592

RESUMEN

In a previous study, we found that administration of ILB®, a new low molecular weight dextran sulphate, significantly improved mitochondrial functions and energy metabolism, as well as decreased oxidative/nitrosative stress, of brain tissue of rats exposed to severe traumatic brain injury (sTBI), induced by the closed-head weight-drop model of diffused TBI. Using aliquots of deproteinized brain tissue of the same animals of this former study, we here determined the concentrations of 24 amino acids of control rats, untreated sTBI rats (sacrificed at 2 and 7 days post-injury) and sTBI rats receiving a subcutaneous ILB® administration (at the dose levels of 1, 5 and 15 mg/kg b.w.) 30 min post-impact (sacrificed at 2 and 7 days post-injury). Additionally, in a different set of experiments, new groups of control rats, untreated sTBI rats and ILB®-treated rats (administered 30 min after sTBI at the dose levels of 1 or 5 mg/kg b.w.) were studied for their neurocognitive functions (anxiety, locomotor capacities, short- and long-term memory) at 7 days after the induction of sTBI. Compared to untreated sTBI animals, ILB® significantly decreased whole brain glutamate (normalizing the glutamate/glutamine ratio), glycine, serine and γ-aminobutyric acid. Furthermore, ILB® administration restored arginine metabolism (preventing nitrosative stress), levels of amino acids involved in methylation reactions (methionine, L-cystathionine, S-adenosylhomocysteine), and N-acetylaspartate homeostasis. The macroscopic evidences of the beneficial effects on brain metabolism induced by ILB® were the relevant improvement in neurocognitive functions of the group of animals treated with ILB® 5 mg/kg b.w., compared to the marked cognitive decline measured in untreated sTBI animals. These results demonstrate that ILB® administration 30 min after sTBI prevents glutamate excitotoxicity and normalizes levels of amino acids involved in crucial brain metabolic functions. The ameliorations of amino acid metabolism, mitochondrial functions and energy metabolism in ILB®-treated rats exposed to sTBI produced significant improvement in neurocognitive functions, reinforcing the concept that ILB® is a new effective therapeutic tool for the treatment of sTBI, worth being tested in the clinical setting.


Asunto(s)
Lesiones Traumáticas del Encéfalo , Sulfatos , Aminoácidos/metabolismo , Animales , Lesiones Traumáticas del Encéfalo/tratamiento farmacológico , Lesiones Traumáticas del Encéfalo/metabolismo , Sulfato de Dextran , Ácido Glutámico , Homeostasis , Peso Molecular , Ratas
20.
J Clin Med ; 11(14)2022 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-35887904

RESUMEN

Severe community-acquired pneumonia (CAP) is a condition that frequently requires intensive care and, eventually, can cause to death. Piperacillin/tazobactam antibiotic therapy is employed as an empiric intravenous regimen, in many cases supplemented with intravenous bolus hydrocortisone treatment. The individual and condition-dependent pharmacokinetic properties of these drugs may lead to therapeutic failure. The impact of systemic inflammation, as well as of hydrocortisone on the altered pharmacokinetics of piperacillin is largely unknown. The protocol of a clinical study aimed at the characterization of the pharmacokinetics of piperacillin and tazobactam and its association with the concentrations of inflammatory markers and adrenal steroids during CAP therapy will be investigated in up to 40 critically ill patients. The serum concentrations of piperacillin and tazobactam, cortisol, cortisone, corticosterone and 11-deoxycortisol and interleukin-6 levels, as well as routine clinical chemistry and hematology parameters will be monitored from the beginning of treatment for up to five days. Nonparametric population pharmacokinetic modeling and Monte-Carlo simulations will be performed to make estimates of the pharmacokinetics of piperacillin and tazobactam and the probability of pharmacokinetic-pharmacodynamic target attainment. The observed individual characteristics and changes will be correlated with clinical and laboratory findings. The protocol of the observational study will be designed following the STROBE guideline.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA