RESUMEN
Among the oldest winged insects, odonates are a monophyletic order that have become important models for ecological studies because of their highly diverse reproductive behaviors and their role as top predators and bioindicators. However, knowledge on evolutionary relationships within the order is still scarce compared to other taxa, and this situation is even more complicated in areas with high biodiversity, such as in the Amazon. Here, we sought to identify knowledge gaps on Amazonian Odonata regarding three main aspects: (i) how the inclusion of Amazonian taxa affects our interpretation of the evolutionary relationships of Zygoptera and Anisoptera; (ii) the position of Amazonian taxa in the existing supertree of the Odonata; (iii) dating evolutionary divergence between nodes using fossil records; (iv) assessing whether more species-rich basins (e.g., Amazon basin) have a larger phylogenetic gap when compared to basins with lower richness in South and Central America; and (v) in the light of our knowledge, we discuss diversification patterns found in the most predominant clades of Amazonian taxa. We built a supertree from currently available phylogenetic information of Odonata. The results show that there is no genetic information for 85% (n: 503) of the Amazonian species and that family level relationships are unknown for 17 genera. After compiling the data, we observed that clades belonging to Neotropical lineages are the most poorly resolved, with large polytomies. This problem was identified in many Anisoptera genera, such as Macrothemis, Dasythemis, Elasmothemis, and Erythrodiplax. Our results also suggest that not always the richest basins have the greatest phylogenetic gaps. As expected, we found important gaps in the existing Odonata phylogenies, especially in clades that include Amazonian representatives, that are also those less known from ecological and conservation perspectives.
Asunto(s)
Odonata , Animales , Biodiversidad , Evolución Biológica , América Central , Odonata/genética , FilogeniaRESUMEN
Studies on ecological communities often address patterns of species distribution and abundance, but few consider uncertainty in counts of both species and individuals when computing diversity measures.We evaluated the extent to which imperfect detection may influence patterns of taxonomic, functional, and phylogenetic diversity in ecological communities.We estimated the true abundance of fruit-feeding butterflies sampled in canopy and understory strata in a subtropical forest. We compared the diversity values calculated by observed and estimated abundance data through the hidden diversity framework. This framework evaluates the deviation of observed diversity when compared with diversities derived from estimated true abundances and whether such deviation represents a bias or a noise in the observed diversity pattern.The hidden diversity values differed between strata for all diversity measures, except for functional richness. The taxonomic measure was the only one where we observed an inversion of the most diverse stratum when imperfect detection was included. Regarding phylogenetic and functional measures, the strata showed distinct responses to imperfect detection, despite the tendency to overestimate observed diversity. While the understory showed noise for the phylogenetic measure, since the observed pattern was maintained, the canopy had biased diversity for the functional metric. This bias occurred since no significant differences were found between strata for observed diversity, but rather for estimated diversity, with the canopy being more clustered.We demonstrate that ignore imperfect detection may lead to unrealistic estimates of diversity and hence to erroneous interpretations of patterns and processes that structure biological communities. For fruit-feeding butterflies, according to their phylogenetic position or functional traits, the undetected individuals triggered different responses in the relationship of the diversity measures to the environmental factor. This highlights the importance to evaluate and include the uncertainty in species detectability before calculating biodiversity measures to describe communities.
RESUMEN
Patterns of species replacement and richness differences along environmental gradients or ecoregions shed light on different ecological and evolutionary mechanisms acting on community structure. Communities of aquatic ecosystems of different watersheds are supposed to host distinct species and lineages. Quantifying and understanding the degree to which these differences are affected by environmental and biogeographical factors remains an open question for these environments, particularly in the Neotropical region. We investigated patterns of taxonomic and phylogenetic composition of headwater streams of the Paraná and Paraguai River basins to understand how local and biogeographical factors affect the assembly of fish communities. We also quantified taxonomic and phylogenetic beta diversity by decomposing them into nestedness and turnover components. We found that local environmental factors are the main factors influencing the composition of stream fish communities. Whereas pH affected both taxonomic and phylogenetic turnover, water velocity was responsible for phylogenetic turnover and pH was the main driver of phylogenetic nestedness. Our results indicate an effect of local environmental factors in determining the structure of headwater stream fish communities through a combination of a species sorting mechanism (water velocity and pH) and phylogenetic habitat filtering (pH).(AU)
Padrões de substituição de espécies ou diferenças de riqueza ao longo de gradientes ambientais ou ecoregiões lançam luz sobre diferentes processos e mecanismos ecológicos atuando na estruturação das comunidades. Supõe-se que comunidades aquáticas pertencentes a diferentes bacias pertençam a linhagens evolutivas distintas. Quantificar e entender o grau em que tais diferenças são resultado de fatores ambientais locais e/ou processos biogeográficos ainda é uma questão pouco explorada. Neste estudo nós investigamos os padrões de composição taxonômica e filogenética em riachos de cabeceira das bacias dos Rios Paraná e Paraguai, para entender como fatores locais e biogeográficos afetam a estruturação das comunidades de peixes. Nós quantificamos a diversidade beta taxonômica e filogenética decompondo estas em aninhamento e substituição. Encontramos que os fatores ambientais locais são os principais determinantes da composição das comunidades de peixes destes riachos. Enquanto o pH afetou tanto a substituição de linhagens e de espécies, a velocidade da água foi responsável por uma substituição de linhagens, enquanto o pH foi o principal responsável pelo aninhamento de linhagens. Nossos resultados indicam a importância dos fatores locais através da combinação entre mecanismos de preferência de nicho (velocidade da água e pH) e filtragem ambiental de linhagens (pH).(AU)
Asunto(s)
Animales , Filogenia , Clasificación , Ecosistema , Peces , Ríos , Concentración de Iones de HidrógenoRESUMEN
Ecological literature offers a myriad of methods for quantifying ß diversity. One such method is determining BDtotal (BD), which, unlike other methods, can be decomposed into meaningful components that indicate how unique a sampling unit is regarding its composition (local contribution) and how unique a species is regarding its occurrence in the community (species contribution). Despite this advantage, the original formulation of the BD metric only assesses taxonomic variation and neglects other important dimensions of biodiversity. We expanded the original formulation of BD to capture variation in the functional and phylogenetic dimensions of community data by computing two new metrics-BDFun and BDPhy -as well as their respective components that represent the local and species contribution. We tested the statistical performance of these new metrics for capturing variation in functional and phylogenetic composition through simulated communities and illustrated the potential use of these new metrics by analyzing ß diversity of stream fish communities. Our results demonstrated that BDPhy and BDFun have acceptable type I error and great power to detect the effect of deep evolutionary relationships and attributes mediating patterns of ß diversity. The empirical example illustrated how BDPhy and BDFun reveal complementary aspects of ß diversity relative to the original BD metric. These new metrics can be used to identify local communities that are of conservation importance because they represent unique functional, phylogenetic, and taxonomic compositions. We conclude that BDPhy and BDFun are important tools for providing complementary information in the investigation of the structure of biological communities.