Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Int J Biol Macromol ; : 134319, 2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-39097046

RESUMEN

In this research, a novel active food packaging material was developed by blending starch, chitosan, and plant-based mucilage with zinc oxide nanoparticles. The polymeric nanocomposite film, created by incorporating zinc oxide nanoparticles into the mixture using a straightforward approach, was analyzed for its structural and functional attributes using FTIR, XRD, SEM, and TGA/DSC. These analyses revealed a robust interaction between the polymers' functional groups and the nanoparticles, forming a stable film. The film's mechanical properties, including tensile strength and Young's modulus, were high. It also showed reduced wettability and water solubility, enhancing water resistance. The biodegradability rate was 100 %. Antibacterial tests against Bacillus sp. and Pseudomonas sp. showed significant inhibition zones of 26 mm and 30 mm, respectively, demonstrating strong antibacterial effectiveness. The film's non-target toxicity was assessed through phytotoxicity experiments on Vigna angularis and soil nutrient evaluations, with no negative impact on plant growth or soil health observed. These results indicate that this nanocomposite is a safe, biocompatible option for food packaging.

2.
World J Microbiol Biotechnol ; 40(7): 206, 2024 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-38755297

RESUMEN

The significance of microorganisms occurring in foods is predominantly targeted due to their application for identifying a novel range of the bacterial spectrum. Diverse microbial species are capable of exhibiting potential pharmacological activities like antimicrobial and anticancer. Microbial strains capable of reducing obesity-related syndromes have also been reported. In the present study, the hypocholesterolemic efficacy of Bacillus amyloliquefaciens isolated from dairy products was scrutinised by in vitro (3T3-L1 adipose cells) and in vivo (high-fat diet-induced obese Wistar albino rats) methods. Potential cholesterol-lowering isolates were screened using a plate assay method and optimised by physical parameters. Molecular identification of the topmost five cholesterol-lowering isolates was acquired by amplification of the 16 S rRNA gene region. Bacillus amyloliquefaciens strain KAVK1, followed by strains KAVK2, KAVK3, KAVK4, and KAVK5 were molecularly determined. Further, cholesterol-lowering strains degraded the spectral patterns determined by the side chain of a cholesterol molecule. The anti-lipase activity was demonstrated using the porcine pancreatic lipase inhibitory method and compared with the reference compound Atorvastatin. Lyophilised strain KAVK1 revealed maximum pancreatic lipase inhibition. Strain KAVK1 attenuated lipid accumulation in 3T3-L1 adipose cell line predicted by Oil Red O staining method. Significant reduction of body weight and change in lipid profile was recognised after the supplement of KAVK1 to obese rats. Histopathological changes in organs were predominantly marked. The result of this study implies that the cholesterol-lowering B. amyloliquefaciens KAVK1 strain was used to treat hypercholesterolemia.


Asunto(s)
Células 3T3-L1 , Anticolesterolemiantes , Bacillus amyloliquefaciens , Dieta Alta en Grasa , Metabolismo de los Lípidos , Obesidad , ARN Ribosómico 16S , Ratas Wistar , Animales , Bacillus amyloliquefaciens/metabolismo , Dieta Alta en Grasa/efectos adversos , Ratones , Obesidad/microbiología , Ratas , Anticolesterolemiantes/farmacología , Metabolismo de los Lípidos/efectos de los fármacos , ARN Ribosómico 16S/genética , Masculino , Modelos Animales de Enfermedad , Colesterol/metabolismo , Lipasa/metabolismo , Adipocitos/metabolismo , Adipocitos/efectos de los fármacos
3.
Artículo en Inglés | MEDLINE | ID: mdl-38713338

RESUMEN

The role of food additives is to preserve food by extending shelf life and limiting harmful microorganism proliferation. They prevent spoilage by enhancing the taste and safety of food by utilizing beneficial microorganisms and their antimicrobial metabolites. Current advances in food preservation and processing utilize green technology principles for green preservative formulation, enhancing nutrition and supplying essential micronutrients safely, while also improving quality, packaging, and food safety. Encapsulation is gaining attention for its potential to protect delicate materials from oxidative degradation and extend their shelf life, thereby ensuring optimal nutrient uptake. Nanoencapsulation of bioactive compounds has significantly improved the food, pharmaceutical, agriculture, and nutraceutical industries by protecting antioxidants, vitamins, minerals, and essential fatty acids by controlling release and ensuring delivery to specific sites in the human body. This emerging area is crucial for future industrial production, improving the sensory properties of foods like color, taste, and texture. Research on encapsulated bioactive compounds like bacteriocins, LAB, natamycin, polylysine, and bacteriophage is crucial for their potential antioxidant and antimicrobial activities in food applications and the food industry. This paper reviews nanomaterials used as food antimicrobial carriers, including nanoemulsions, nanoliposomes, nanoparticles, and nanofibers, to protect natural food antimicrobials from degradation and improve antimicrobial activity. This review discusses nanoencapsulation techniques for biopreservative agents like nisin, poly lysine, and natamycin, focusing on biologically-derived polymeric nanofibers, nanocarriers, nanoliposomes, and polymer-stabilized metallic nanoparticles. Nanomaterials, in general, improve the dispersibility, stability, and availability of bioactive substances, and this study discusses the controlled release of nanoencapsulated biopreservative agents.

4.
Int J Biol Macromol ; 259(Pt 1): 129264, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38199548

RESUMEN

Biocomposites based on starch- gum acacia- agar, chitosan- starch- agar, starch- poly vinyl alcohol- agar were synthesized by simple, green route principles and the various characterization techniques like fourier infrared spectroscopy, SEM revealed the highly stable micro dimenstional that specially interacted with functional groups of polymers -herbicidal metabolites. Respective biocomposite was prepared by mixing equal volume of the selected polymer (1;1;1 ratio) with known concentration (100 mg of in distilled water followed by the addition of reconstituted herbicidal metabolites (100 mg or 0.1 g). Though all the biocomposites were capable of inducing herbicidal effect, notable impact was recorded in chitosan- starch- gum acacia treatment. In this case, the necrotic lesions were initiated at the early incubation period (6 h), progressively developing into dark brownish black lesions with 30.0 mm diameter. Release profile of the metabolites from the respective composite was also under in vitro and soil assay. Release profile study under in vitro and soil condition showed the sustained or controlled manner in distilled water and ethyl acetate treatment. No sign of toxic effect on the soil, parameters plant growth, rhizobacteria and peripheral blood cells clearly revealed the best biocompatibility of the presently proposed biocomposite.


Asunto(s)
Quitosano , Herbicidas , Quitosano/química , Almidón/química , Goma Arábiga , Agar , Polímeros , Agua , Suelo
5.
Sci Total Environ ; 831: 154808, 2022 Jul 20.
Artículo en Inglés | MEDLINE | ID: mdl-35341870

RESUMEN

Persistent organic pollutants (POPs) are organic chemicals that can persist in the environment for a longer period due to their non-biodegradability. The pervasive and bio-accumulative behavior of POPs makes them highly toxic to the environmental species including plants, animals, and humans. The present review specifies the POP along with their fate, persistence, occurrence, and risk analysis towards humans. The different biological POPs degradation methods, especially the microbial degradation using bacteria, fungi, algae, and actinomycetes, and their mechanisms were described. Moreover, the source, transport of POPs to the environmental sources, and the toxic nature of POPs were discussed in detail. Agricultural and industrial activities are distinguished as the primary source of these toxic compounds, which are delivered to air, soil, and water, affecting on the social and economic advancement of society at a worldwide scale. This review also demonstrated the microbial degradation of POPs and outlines the potential for an eco-accommodating and cost-effective approach for the biological remediation of POPs using microbes. The direction for future research in eliminating POPs from the environmental sources through various microbial processes was emphasized.


Asunto(s)
Contaminantes Ambientales , Contaminantes Orgánicos Persistentes , Animales , Monitoreo del Ambiente , Contaminantes Ambientales/análisis , Medición de Riesgo , Suelo , Agua
6.
Int J Biol Macromol ; 190: 940-959, 2021 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-34478798

RESUMEN

Among the diverse nanomaterials, polymer-based nanocomposites are gained more attention due to their high efficacy, target biological activities, biodegradability and biocompatibility-gum acacia (GA) - a polymer obtained from acacia trees-is considering the multifunctional nanocomposite synthesis. Distinctive Physico-chemical and biocompatibility properties of gum acacia are utilised to prepare a highly stable, biologically active, eco-friendly Nanocomposite. In this current investigation, gum acacia - poly ethylene glycol grafted iron oxide nanocomposite (GA-PEG-IONC) was synthesised by in situ green science principles. The synthesised Nanocomposite was evaluated against the molecular mechanism of urinary tract pathogenic bacterial strains and prostate cancer cells (Pc 3). Nanocomposite prepared in this examination exhibited notable structural, functional stability with nanoarchitecture which was affirmed by Fourier transform infrared spectroscopy (FTIR), electron microscopic studies, atomic force microscopy (AFM), vibrating sample magnetometric analysis (VSM) and X-ray diffraction (XRD), Synthesised Nanocomposite brought about notable antibacterial activity against urinary tract pathogenic strains by recording potential inhibitory effect on the expression of Las R gene. Inhibition of Las R gene expression reduced notable effect on biofilm development. Anticancer activity against prostate cancer cells (Pc3) was investigated by measurement of HOXB13 gene expression level. Inhibition of HOXB13 gene expression by the IONC brought about structural, functional changes. HOXB13 gene expression inhibition reveals a remarkable cytotoxic effect by recording decreased cell viability. Morphometric analysis by phase-contrast and DAPI fluorescence staining demonstrates that the Nanocomposite prompted cell morphology anomalies or apoptotic changes. Nanocomposite treatment brought about a good sign of Apoptosis by recording enhanced caspase 3 and 9 activities, DNA fragmentation and elevated reactive oxygen species generation (ROS). Hemocompatibility studies were carried out to determine the biocompatibility of the Nanocomposite. Spectrophotometric estimation of plasma haemoglobin, microscopic examination of whole blood cells shows the Nanocomposite was not inciting any indication of toxicity. These findings infer that IONC synthesised in the present study is the promising contender for a broad scope of biomedical applications, especially as an antibacterial and anticancer agent.


Asunto(s)
Compuestos Férricos/química , Genes prv , Goma Arábiga/química , Proteínas de Homeodominio/genética , Nanocompuestos/química , Polietilenglicoles/química , Neoplasias de la Próstata/genética , Pseudomonas aeruginosa/genética , Antibacterianos/farmacología , Antineoplásicos/farmacología , Biopelículas/efectos de los fármacos , Caspasa 3/metabolismo , Catéteres , Fragmentación del ADN/efectos de los fármacos , Escherichia coli/efectos de los fármacos , Regulación Bacteriana de la Expresión Génica/efectos de los fármacos , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Tecnología Química Verde , Proteínas de Homeodominio/metabolismo , Humanos , Masculino , Pruebas de Sensibilidad Microbiana , Nanocompuestos/ultraestructura , Células PC-3 , Filogenia , Pseudomonas aeruginosa/efectos de los fármacos , Especies Reactivas de Oxígeno/metabolismo , Espectrofotometría Ultravioleta , Espectroscopía Infrarroja por Transformada de Fourier , Difracción de Rayos X
7.
3 Biotech ; 11(9): 401, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-34422541

RESUMEN

Among the diverse nanomaterials, gold nanoparticles (AuNps) are utilised for various therapeutic application due to the distinct physical, chemical properties and biocompatibility. Synthesis of gold nanoparticles using plants is the promising route. This method is low cost, eco-friendly and higher biological activities. In this present study, Gold nanoparticles were synthesised from fruit extract of Terminalia bellirica fruit extract. Their anticancer and anti-inflammatory activity was evaluated against colorectal cancer cell line (HT29) and TNBS-induced zebrafish model. Highly stable tannin capped gold nanoparticles were synthesised from fruit extract broth of Terminalia bellirica rapidly. Structural and functional properties of the synthesised nanoparticles were studied by Fourier transform infrared spectroscopy (FTIR), Field Emission Scanning Electron Microscopy (FESEM) equipped with energy-dispersive atomic X-ray spectroscopy (EDAX) and X-ray diffraction (XRD). All the characterisation studies reveal highly stable, crystalline, phytochemicals, mainly tannin doped, spherical, 28 nm controlled sized gold nanoparticles. The molecular mechanism of anticancer activity was studied by determining cancer markers' expression, which was studied using quantitative real-time polymerase chain reaction (qPCR). Antioxidative enzymes' status and apoptosis changes were also investigated. Synthesised nanoparticles brought a drastic reduction of all the tested cancer markers' expression. Notable changes in antioxidative enzymes' status and a good sign of apoptosis were observed in nanoparticles' treatment. The anti-inflammatory activity was studied against TNBS-induced zebrafish model, which was confirmed by determining inflammatory markers' expression TNF-α, iNOS (induced Nitric Oxide Synthase) and histopathological examination. Nanoparticles' treatment recorded a drastic reduction of inflammatory markers' expression. No marked sign of inflammation was also observed in histopathological analysis of the nanoparticles' treatment group. The present study suggests the possible utilisation of T. bellirica-mediated gold nanoparticles as an effective therapeutic agent against a prolonged inflammatory disease that progressively develops into cancer.

8.
Int J Biol Macromol ; 138: 1109-1129, 2019 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-31362021

RESUMEN

The logical research on fundamentally adjusted iron oxide nanoparticles has turned out to expanded in biomedicine because of the improved activity and best biocompatibility. In this present work upgraded bio-restorative and pharmacotherapeutic property of chitosan­iron oxide nanocomposite, which was set up by eco-friendly in situ substance technique. Characterisation of the synthesised nanocomposite by scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR), x-ray diffraction,(XRD) and Vibrating test magnetometer (VSM) studies reveals that highly stable spherical, electron-dense core shelled rough particles of 50-60 nm. Particle morphology of the synthesised nanocomposite utilising scanning electron microscopy (SEM) uncovers spherical; thick electron centre shelled harsh particles with the size scope of 50-60 nm. FTIR studies show that the specific interaction of practical gatherings of chitosan with iron oxide nanoparticles. Crystalline phase and magnetisation impact of the composite resolved from XRD and VSM studies. Anti-bacterial activity of the nanocomposite examined against human bacterial pathogens which suggest that the readied nanocomposite successfully restrained the development of the tried bacterial strains by recording maximum zone of inhibition, least minimum inhibition concentration (MIC) and biofilm damage against the both tested strains. 100 µg dosages of nanocomposites recorded 20.0 and 21.0 mm of the zone of inhibition against E. coli and S. aureus respectively. Biofilm restraint was additionally observed to be high in nanocomposite treatment by recording lower optical density of ethanol solubilised biofilm of both tested strains. Anticancer activity was examined against the A549 cell line by the assurance of cell feasibility as opposed to oxidative proteins, articulation example of TNF-α, Bax, PARP qualities and apoptosis. Composite prompted 50% of cytotoxicity at 80 µg/mL unmistakably uncovers cytotoxicity against A549 cells. Nanocomposite treatment revealed a high decrease of cell feasibility at all the fixation and most extreme impact seen in 100 µg. Nanocomposite treated cells demonstrated striking changes in cell morphology, the build-up of atomic material related to trademark changes in against oxidative enzymes, quality articulation design which brought about apoptosis-like necrotic cell death. The present findings would propose the conceivable usage of chitosan­iron oxide nanocomposite as a viable remedial against safe medication pathogens and malignant growth cells.


Asunto(s)
Antiinfecciosos/síntesis química , Antiinfecciosos/farmacología , Antineoplásicos/síntesis química , Antineoplásicos/farmacología , Quitosano/química , Compuestos Férricos/química , Nanocompuestos/química , Antiinfecciosos/química , Antineoplásicos/química , Apoptosis/efectos de los fármacos , Biopelículas/efectos de los fármacos , Línea Celular Tumoral , Humanos , Pruebas de Sensibilidad Microbiana , Nanocompuestos/ultraestructura , Análisis Espectral
9.
J Environ Biol ; 35(3): 531-6, 2014 May.
Artículo en Inglés | MEDLINE | ID: mdl-24813009

RESUMEN

Bioremediation of phenol was done using Candida tropicalis SSK01 immobilized cells isolated from petroleum contaminated soil. Optimization of phenol degradation studies was carried at 30 °C to 40 °C, pH 6 to 8 and initial concentration of 300 mgl⁻¹ to 900 mgl⁻¹. Candida tropicalis SSK01 cells immobilized using sodium alginate were used in phenol degradation studies. Optimization of phenol degradation was performed by Central Composite Design (CCD). A total of 20 experiments were carried out and the optimal degradation of 95.2% was observed at 34.20 °C at pH 6.86 with initial concentration of 610 mgl⁻¹ The R², adjusted R² and Predicted R² values were 0.9976, 0.9955 and 0.9919 respectively which indicates that experimental values are in good agreement with the predicted values.


Asunto(s)
Reactores Biológicos , Candida tropicalis/fisiología , Fenoles/metabolismo , Contaminantes Químicos del Agua/metabolismo , Células Inmovilizadas , Purificación del Agua
10.
Environ Technol ; 33(7-9): 975-81, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22720423

RESUMEN

Pilot-scale vermicomposting was explored using Eudrilus eugeniae for 90 days with 45 days preliminary decomposition using different agro-industrial wastes as substrates. Spent wash and pressmud were mixed together (referred to as PS) and then combined with cow dung (CD) at five different ratios of PS:CD, namely, 25:75 (T1), 50:50 (T2), 75:25 (T3), 85:15 (T4) and 100 (T5), with two replicates for each treatment. All vermibeds expressed a significant decrease in pH (11.4-14.8%), organic carbon (4.2-30.5%) and an increase in total nitrogen (6-29%), AP (5-29%), exchangeable potash (6-21%) and turnover rate (52-66%). Maximum mortality (18.10%) of worms was recorded in T5 treatment. A high manurial value and a matured product was achieved in T3 treatment. The data reveal that pressmud mixed with spent wash can be decomposed through vermicomposting and can help to enhance the quality of vermicompost.


Asunto(s)
Anélidos/fisiología , Residuos Industriales , Suelo , Animales , Bovinos , Proyectos Piloto , Reciclaje
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA