Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros

Base de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Front Plant Sci ; 15: 1388881, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39119506

RESUMEN

Introduction: Wheat grain filling processes under post-anthesis stress scenarios depend mainly on stem traits and remobilization of stem water-soluble carbohydrates (WSC). Methods: A diverse panel of advanced semi-dwarf spring wheat lines, representing a natural variation in stem traits (WSC content, stem diameter, peduncle length, and stem wall width), was used to identify specific traits that reliably reflect the relationship between WSC and grain yield. The panel was phenotyped under various environmental conditions: well-watered, water-limited, and heat stress in Mexico, and terminal-drought in Israel. Results: Environmental stresses reduced grain yield (from 626 g m-2 under well-watered to 213 g m-2 under heat), lower internode diameter, and peduncle length. However, stem-WSC generally peaked 3-4 weeks after heading under all environmental conditions except heat (where it peaked earlier) and expressed the highest values under water-limited and terminal-drought environments. Increased investment in internode diameter and peduncle length was associated with a higher accumulation of stem WSC, which showed a positive association with yield and kernel weight. Across all environments, there were no apparent trade-offs between increased crop investment in internode diameter, peduncle length, and grain yield. Discussion: Our results showed that selecting for genotypes with higher resource investment in stem structural biomass, WSC accumulation, and remobilization could be a valuable strategy to ameliorate grain size reduction under stress without compromising grain yield potential. Furthermore, easy-to-measure proxies for WSC (stem diameter at specific internodes and length of the last internode, i.e., the peduncle) could significantly increase throughput, potentially at the breeding scale.

2.
Front Nutr ; 10: 1059078, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37275635

RESUMEN

Introduction: During the 20th century, the worldwide genetic diversity of wheat was sharply eroded by continual selection for high yields and industry demands for particular standardized qualities. A collection of Israeli and Palestinian landraces (IPLR) was established to represent genetic diversity, accumulated for ten millennia under diverse environments, which was mostly lost in this transition. As our long-term goal is to study this pre- Green Revolution genetic reservoir, herein we focus on its flour and bread quality and sensorial attributes. Methods: Initially, a database was built for the entire IPLR collection (n=901) holding both Triticum durum (durum wheat) and T. aestivum (bread wheat) which included genetic and phenotypic characterization of agronomic traits, grain and flour quality. Then, a representative subset of the IPLR was selected and compared to modern varieties for dough quality, rheology, aroma and taste using both whole and refined flours and breads. The sensory panel used 40 subjects who evaluated common protocol or sourdough breads made by four artisan bakers. Results: Results show modern durum cultivar C-9 had superior rheological properties (gluten index, elasticity, dough development time) as compared with landraces, while bread landrace 'Diar Alla' was markedly preferable for baking in relation to the modern cultivar Gadish. Baking tests and subsequent sensory evaluation clearly demonstrated a preference toward refined breads, apart from whole breads prepared using sourdough starters. In bread wheat, loaves baked using landrace flour were scored higher in several quality parameters, whereas in durum lines, the opposite trend was evident. Loaves baked from landraces 'Diar Alla' and to a lesser extent 'Hittia Soada' presented a markedly different aroma from the control loaves prepared from modern flours, both in terms of overall compositions and individual compounds, including classes such as pyranones, pyrazines, furans and pyrroles (maltol). Modern lines, on the other hand, were consistently richer in terpenes and phenylpropanoids. Further analysis demonstrated a significant association between specific aroma classes and sensory attributes scored by panelists. Discussion: The findings of the study may help advance new niches in the local wheat market aimed at health and nutrition including adapting durum varieties to the bread market and developing flavor-enhanced wholemeal breads.

3.
Plants (Basel) ; 11(11)2022 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-35684235

RESUMEN

Emmer wheat (Triticum turgidum ssp. dicoccum) is one of the world's oldest domesticated crops, and it harbors a potentially rich reservoir of agronomic and nutritional quality trait variations. The growing global demand for plant-based health-food niche markets has promoted new commercial interest in ancient grains, including Emmer wheat. Although T. dicoccum can also perform well under harsh environments, its cultivation along the Mediterranean agro-ecosystems is sparse. Here, we analyze a unique tetraploid wheat collection (n = 121) representing a wide geographic range of Emmer accessions, using 9897 DArTseq markers and on-field phenotypic characterization to quantify the extent of diversity among populations and the interactions between eco-geographic, genetic, and phenotypic attributes. Population genomic inferences based on the DArTseq data indicated that the collection could be split into four distinguished clusters in accordance with their eco-geographic origin although significant phenotypic variation was observed within clusters. Superior early vegetative vigor, shorter plant height, and early phenology were observed among emmer wheat accessions from Ethiopia compared to accessions from northern regions. This adaptive advantage highlights the potential of emmer wheat as an exotic germplasm for wheat improvement through breeding. The direct integration of such germplasm into conventional or organic farming agro-systems under the Mediterranean basin climate is also discussed.

4.
Plants (Basel) ; 10(12)2021 Nov 28.
Artículo en Inglés | MEDLINE | ID: mdl-34961083

RESUMEN

The Near East climate ranges from arid to a Mediterranean, under which local wheat landraces have been grown for over millennia, assumingly accumulating a unique repertoire of genetic adaptations. In the current study, we subjected a subset of the Israeli Palestinian Landraces (IPLR) collection (n = 19: durum and bread wheat landraces, modern wheat cultivars, and landraces mixtures) to full-field evaluation. The multifield experiment included a semiarid site (2018-2019, 2019-2020) under low (L) and high (H) supplementary irrigation, and a Mediterranean site (2019-2020). Water availability had a major impact on crop performance. This was reflected in a strong discrimination between environments for biomass productivity and yield components. Compared to landraces, modern cultivars exhibited significantly higher grain yield (GY) across environments (+102%) reflecting the effect of the Green Revolution. However, under the Gilat19 (L) environment, this productivity gap was significantly reduced (only +39%). Five excelling landraces and the durum mix exhibited good agronomic potential across all trails. This was expressed in relatively high GY (2.3-2.85 t ha-1), early phenology (86-96 days to heading) and lodging resistance. Given the growing interest of stakeholders and consumers, these might be considered future candidates for the local artisanal wheat grain market. Yet, this step should be taken only after establishing an adjustable field management protocol.

5.
Sci Rep ; 11(1): 7208, 2021 03 30.
Artículo en Inglés | MEDLINE | ID: mdl-33785769

RESUMEN

The rising demand for spelt wheat (Triticum aestivum ssp. spelta) as a high-value grain crop has raised interest in its introduction into non-traditional spelt growing areas. This study aimed to assess adaptive constrains of spelt under short Mediterranean season. At first screening of a wide spelt collection for phenology and allelic distribution at the photoperiod (PPD) and vernalization (VRN) loci was done. In addition an in-depth phenotypic evaluation of a selected panel (n = 20) was performed, including agronomically important traits and concentration of grain mineral (GMC) and grain protein (GPC) content. Results from both wide screening and in-depth in panel (group of 18 spelt lines and two bread wheat lines) evaluation shows that the major adaptive constraint for spelt under Mediterranean conditions is late heading, caused by day length sensitivity, as evident from phenology and allelic profile (PPD and VRN). All lines carrying the photoperiod-sensitive allele (PPD-D1b) were late flowering (> 120DH). Based on the panel field evaluations those consequently suffer from low grain yield and poor agronomic performances. As for minerals, GMC for all but Zn, significantly correlated with GPC. In general, GMC negatively correlated with yield which complicated the assessment of GMC per-se and challenge the claim for higher mineral content in spelt grains. The exceptions were, Fe and Zn, which did not correlate with yield. Spelt lines showing high Fe and Zn concentration in a high-yield background illustrate their potential for spelt wheat breeding. Improving spelt adaptation to Mediterranean environments could be mediated by introducing the insensitive-PPD-D1a allele to spelt wheat background. Following this breeding path spelt could better compete with bread wheat under short season with limited and fluctuating rain fall.

6.
Plant Sci ; 303: 110785, 2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-33487360

RESUMEN

Chemical weed-control is the most effective practice for wheat, however, rapid evolution of herbicide-resistant weeds threat food-security and calls for integration of non-chemical practices. We hypothesis that integration of alternative GA-responsive dwarfing genes into elite wheat cultivars can promote early vigor and weed-competitiveness under Mediterranean climate. We develop near-isogenic lines of bread wheat cultivars with GAR dwarfing genes and evaluate them for early vigor and weed-competitiveness under various environmental and management conditions to identify promising NIL for weed-competitiveness and grain yield. While all seven NILs responded to external gibberellic acid application, they exhibited differences in early vigor. Greenhouse and field evaluations highlighted NIL OC1 (Rht8andRht12) as a promising line, with significant advantage in canopy early vigor over its parental. To facilitate accurate and continuous early vigor data collection, we applied non-destructive image-based phenotyping approaches which offers non-expensive and end-user friendly solution for selection. NIL OC1 was tested under different weed density level, infestation waves, and temperatures and highlight the complex genotypic × environmental × management interactions. Our findings demonstrate the potential of genetic modification of dwarfing genes as promising approach to improve weed-competitiveness, and serve as basis for future breeding efforts to support sustainable wheat production under semi-arid Mediterranean climate.


Asunto(s)
Malezas , Triticum/genética , Clima , Producción de Cultivos/métodos , Genes de Plantas , Fitomejoramiento , Malezas/crecimiento & desarrollo , Carácter Cuantitativo Heredable , Triticum/crecimiento & desarrollo
7.
J Sci Food Agric ; 100(11): 4083-4092, 2020 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-31141162

RESUMEN

BACKGROUND: For over a century, genetic diversity of wheat worldwide was eroded by continual selection for high yields and industrial demands. Wheat landraces cultivated in Israel and Palestine demonstrate high genetic diversity and a potentially wide repertoire of adaptive alleles. While most Israeli-Palestinian wheat landraces were lost in the transition to 'Green Revolution' semi-dwarf varieties, some germplasm collections made at the beginning of the 20th century survived in gene banks and private collections worldwide. However, fragmentation and poor conservation place this unique genetic resource at a high risk of genetic erosion. Herein, we describe a long-term initiative to restore, conserve, and characterize a collection of Israeli and Palestinian wheat landraces (IPLR). RESULTS: We report on (i) the IPLR construction (n = 932), (ii) the historical and agronomic context to this collection, (iii) the characterization and assessment of the IPLR's genetic diversity, and (iv) a data comparison from two distinct subcollections within IPLR: a collection made by N. Vavilov in 1926 (IPLR-VIR) and a later one (1979-1981) made by Y. Mattatia (IPLR-M). Though conducted in the same eco-geographic space, these two collections were subjected to considerably different conservation pathways. IPLR-M, which underwent only one propagation cycle, demonstrated marked genetic and phenotypic variability (within and between accessions) in comparison with IPLR-VIR, which had been regularly regenerated over ∼90 years. CONCLUSION: We postulate that long-term ex situ conservation involving human and genotype × environment selection may significantly reduce accession heterogeneity and allelic diversity. Results are further discussed in a broader context of pre-breeding and conservation. © 2019 Society of Chemical Industry.


Asunto(s)
Variación Genética , Triticum/clasificación , Triticum/genética , Agricultura/historia , Alelos , Genotipo , Historia del Siglo XX , Historia del Siglo XXI , Israel , Fitomejoramiento , Triticum/química
8.
Front Plant Sci ; 6: 487, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26217347

RESUMEN

Establishment of seedlings is a key factor in achievement of uniform field stands and, consequently, stable yields. Under Mediterranean conditions, soil moisture in the upper layer is limited and seedlings may be exposed to frequent dehydration events. The presence of the Reduced height (Rht)-B1b and Rht-D1b semi-dominant dwarfing alleles results in insensitivity to gibberellin (GAI) and, hence, poor emergence from deep sowing. Introduction of alternative dwarfing genes and, thereby, preservation of the gibberellin response (GAR) and coleoptile length, contributes to better emergence from deep sowing. Initially 47 wheat cultivars carrying different Rht alleles were screened for their ability to emerge from deep sowing, and then 17 of them were selected for detailed physiological characterization in the field. The modern wheat lines containing GAI alleles showed significantly lower percentages of emergence from deep sowing than the GAR lines, i.e., 52 and 74%, respectively. Differences in early developmental stages were associated with grain yield, as indicated by a reduction of 37.3% in the modern GAI cultivars. Our results demonstrate the potential of alternative dwarfing genes for improving seedling establishment and grain yields in Mediterranean-like environments.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA