Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 353
Filtrar
Más filtros

Tipo del documento
Intervalo de año de publicación
1.
Clin Obes ; : e12687, 2024 Jul 04.
Artículo en Inglés | MEDLINE | ID: mdl-38965765

RESUMEN

Polycyclic aromatic hydrocarbons (PAHs) are naturally occurring environmental pollutants that may contribute to obesity in the adult population. To investigate the relationship between the urinary concentrations of PAH metabolites and adult obesity among the US population, the National Health and Nutritional Examination Survey (NHANES, 2003-2016) was used as a data source for this study. As many as 4464 participants in the NHANES 2003-2016 were included in the final analyses. We used logistic regression to look at the link between urinary PAH metabolites and obesity, using odds ratios (ORs) and 95% confidence intervals (CIs). The study sample comprised 4464 individuals aged ≥18 years, 2199 were male and 2265 were female. The study characteristics for four different quartiles were analyzed, and the average ages of the four urinary PAH quartiles were 49.61 ± 20.01, 46.63 ± 20.33, 44.28 ± 19.19, and 43.27 ± 17.68 years, respectively. In the quartile analysis of all participants, the third quartile was significantly associated with an increased prevalence of obesity (OR = 1.33, 95% CI = 1.12-1.59) with p-values <.05. In addition, females, but not males, had a strong link between the second, third, and fourth quartiles of urinary PAH and a higher risk of obesity (OR = 1.27, 95% CI = 1.00-1.61; OR = 1.52, 95% CI = 1.19-1.94; and OR = 1.39, 95% CI = 1.09-1.78). In conclusion, the study observed that urinary PAH metabolites were associated with the prevalence of obesity among the US population.

2.
Sci Rep ; 14(1): 15546, 2024 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-38969785

RESUMEN

Plant growth-promoting rhizobacteria (PGPR) boost crop yields and reduce environmental pressures through biofilm formation in natural climates. Recently, biofilm-based root colonization by these microorganisms has emerged as a promising strategy for agricultural enhancement. The current work aims to characterize biofilm-forming rhizobacteria for wheat growth and yield enhancement. For this, native rhizobacteria were isolated from the wheat rhizosphere and ten isolates were characterized for plant growth promoting traits and biofilm production under axenic conditions. Among these ten isolates, five were identified as potential biofilm-producing PGPR based on in vitro assays for plant growth-promoting traits. These were further evaluated under controlled and field conditions for their impact on wheat growth and yield attributes. Surface-enhanced Raman spectroscopy analysis further indicated that the biochemical composition of the biofilm produced by the selected bacterial strains includes proteins, carbohydrates, lipids, amino acids, and nucleic acids (DNA/RNA). Inoculated plants in growth chamber resulted in larger roots, shoots, and increase in fresh biomass than controls. Similarly, significant increases in plant height (13.3, 16.7%), grain yield (29.6, 17.5%), number of tillers (18.7, 34.8%), nitrogen content (58.8, 48.1%), and phosphorus content (63.0, 51.0%) in grains were observed in both pot and field trials, respectively. The two most promising biofilm-producing isolates were identified through 16 s rRNA partial gene sequencing as Brucella sp. (BF10), Lysinibacillus macroides (BF15). Moreover, leaf pigmentation and relative water contents were significantly increased in all treated plants. Taken together, our results revealed that biofilm forming PGPR can boost crop productivity by enhancing growth and physiological responses and thus aid in sustainable agriculture.


Asunto(s)
Biopelículas , Raíces de Plantas , Rizosfera , Microbiología del Suelo , Triticum , Triticum/microbiología , Triticum/crecimiento & desarrollo , Biopelículas/crecimiento & desarrollo , Raíces de Plantas/microbiología , Raíces de Plantas/crecimiento & desarrollo , Bacterias/clasificación , Bacterias/genética , Bacterias/metabolismo , Bacterias/crecimiento & desarrollo , Bacterias/aislamiento & purificación , Desarrollo de la Planta , Biomasa
3.
Artículo en Inglés | MEDLINE | ID: mdl-38996180

RESUMEN

A rare metabolic condition called alkaptonuria (AKU) is caused by a decrease in homogentisate 1,2 dioxygenase (HGO) activity due to a mutation in homogentisate dioxygenase (HGD) gene. Homogentisic acid is a byproduct of the catabolism of tyrosine and phenylalanine that darkens the urine and accumulates in connective tissues which causes an agonizing arthritis. Employing the use of deep learning artificial intelligence (AI) drug design, this study aims to alleviate the current toxicity of the AKU drugs currently in use, particularly nitisinone, by utilizing the natural flavanol kaempferol molecule as a 4-hydroxyphenylpyruvate dioxygenase inhibitor. Kaempferol was employed to generate three effective de novo drug candidates targeting the enzyme 4-hydroxyphenylpyruvate dioxygenase using an AI drug design tool. We present novel AIK formulations in the present study. The AIK's (Artificial Intelligence Kaempferol) examination of drug-likeliness among the three led to its choice as a possible target. The toxicity assessment research of AIK demonstrates that it is not only safer to use than other treatments, but also more efficient. The docking of the AIGT with 4-hydroxyphenylpyruvate dioxygenase, which revealed a binding affinity of around -9.099 kcal/mol, highlights the AIK's potential as a therapeutic candidate. An innovative approach to deal with challenging circumstances is thus presented in this study by new formulations kaempferol that have been meticulously designed by AI. The results of the in vitro tests must be confirmed in vivo, even though AI-designed AIK is effective and sufficiently safe as computed.

4.
Vet Res Forum ; 15(5): 251-255, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39022577

RESUMEN

The Cholistani cow is considered one of the milch breeds of Zebu cattle. Despite being heat and tick-resistant, it has not yet gained much popularity among Pakistan dairy farmers due to its long calving interval. This study aimed to understand the basic reproductive physiology of Cholistani cows using sonography and reproductive biotechnologies such as estrus synchronization and timed artificial insemination to improve reproductive efficiency. In experiment 1, six Cholistani cows with mixed parity 3.20 ± 1.30 and weighing 400 kg were selected to monitor ovarian dynamics on alternate days by the same sonographer from the onset of heat through ovulation until the next ovulation. Experiment 2 measured the effect of estrus synchronization methods, controlled internal drug release-gonadotropin-releasing hormone (CIDR-GnRH, n = 31) and Ovsynch (OVS, n = 32) on various reproductive parameters. The mean estrous cycle length was 19.81 ± 0.56 days with two follicular waves. The mean inter-ovulatory interval was 20.80 ± 0.52 days, with a preovulatory follicular size of 13.83 ± 2.37 mm. Estrus response was higher (p > 0.05) in controlled internal drug release (CIDR)-GnRH (93.54%) than in OVS (84.37%) cows. Similarly, ovulation and conception rates were higher in CIDR-GnRH (91.66% vs. 68.42%) than in OVS cows (41.37% vs. 33.33%), respectively. In conclusion, CIDR-GnRH results in a better estrus response, higher ovulation rate, and subsequently greater conception rate than OVS in Bos indicus dairy cows.

5.
Artículo en Inglés | MEDLINE | ID: mdl-39026396

RESUMEN

This study presents a comprehensive genomic exploration, biochemical characterization, and the identification of antibiotic resistance and specialty genes of Pediococcus acidilactici BCB1H strain. The functional characterization, genetic makeup, biological activities, and other considerable parameters have been investigated in this study with a prime focus on antibiotic resistance and specialty gene profiles. The results of this study revealed the unique susceptibility patterns for antibiotic resistance and specialty genes. BCB1H had good in vitro probiotic properties, which survived well in simulated artificial gastrointestinal fluid, and exhibited acid and bile salt resistance. BCB1H didn't produce hemolysis and had certain antibiotic sensitivity, making it a relatively safe LAB strain. Simultaneously, it had good self-coagulation characteristics and antioxidant activity. The EPS produced by BCB1H also had certain antioxidant activity and hypoglycemic function. Moreover, the genome with a 42.4 % GC content and a size of roughly 1.92 million base pairs was analyzed in the genomic investigations. The genome annotation identified 192 subsystems and 1,895 genes, offering light on the metabolic pathways and functional categories found in BCB1H. The identification of specialty genes linked to the metabolism of carbohydrates, stress response, pathogenicity, and amino acids highlighted the strain's versatility and possible uses. This study establishes the groundwork for future investigations by highlighting the significance of using multiple strains to investigate genetic diversity and experimental validation of predicted genes. The results provide a roadmap for utilizing P. acidilactici BCB1H's genetic traits for industrial and medical applications, opening the door to real-world uses in industries including food technology and medicine.

6.
Artículo en Inglés | MEDLINE | ID: mdl-38898802

RESUMEN

Bimetallic nanoparticles, particularly Ag/Zn bimetallic nanoparticles, have gained increasing attention due to their unique properties, making them suitable for a variety of applications such as catalysis, water treatment, and environmental remediation. This study aimed to elucidate the use of bimetallic nanoparticles of Ag/Zn as an alternative to resistant pesticides for pest control. Furthermore, this research demonstrates that BNPs can target specific pollutants and degrade them through various mechanisms. BNP docking with the Nilaparvata lugens cytochrome P450 (CYP6ER1) protein exhibited the lowest binding energy of -7.5 kcal/mol. The cell permeability analysis of BNP in plant cells reveals that the BNP has 0 % permeability towards any cell at -10 kcal/mol energy, which is the lowest free energy translocation pathway. The harmful leftover residues of the pesticides have a higher chance of degradability in case of interaction with BNP validated by chemical-chemical interaction analysis. Additionally, MDCK permeability coefficient of small molecules based on the regression model was calculated for BNP which authenticated the efficiency of BNP. Moreover, Swiss ADMET simulated absorption using a boiled egg model with no blood-brain barrier and gastrointestinal crossing for the expected BNP molecule has been observed. Significantly, the findings indicate that employing bimetallic nanoparticles like Ag/Zn is a crucial strategy for bioremediation because they proficiently decompose pesticides while posing no risk to humans. Our results will facilitate the design of novel BNPs materials for environmental remediation and pest control ensuring human health safety that are predicated on bimetallic nanoparticles.

7.
Sci Rep ; 14(1): 13032, 2024 06 06.
Artículo en Inglés | MEDLINE | ID: mdl-38844676

RESUMEN

Green products such as plant tints are becoming more and more well-known worldwide due to their superior biological and ayurvedic properties. In this work, colorant from Amba Haldi (Curcuma aromatica) was isolated using microwave (MW), and bio-mordants were added to produce colorfast shades. Response surface methodology was used to develop a central composite design (CCD), which maximizes coloring variables statistically. The findings from 32 series of experiments show that excellent color depth (K/S = 12.595) was established onto MW-treated silk fabric (RS = 4 min) by employing 65 mL of radiated aqueous extract (RE = 4 min) of 5 pH cutting-edge the existence of 1.5 g/100 mL used sodium chloride at 75 °C for 45 min. It was discovered that acacia (keekar) extract (1%), pomegranate extract (2%), and pistachio extract (1.5%) were present before coloring by the use of bio-mordants. On the other hand, upon dyeing, acacia extract (1.5%), pomegranate extract (1.5%), and pistachio extract (2%) have all shown extremely strong colorfast colors. Comparatively, before dyeing, salts of Al3+ (1.5%), Fe2+ (2%), and TA (1.5%) gave good results; after dyeing, salts of Al3+ (1%) and Fe2+ (1.5%) and TA (2%) gave good results. When applied to silk fabric, MW radiation has increased the production of dyes recovered from rhizomes. Additionally, the right amount of chemical and biological mordants have been added, resulting in color fastness ratings ranging from outstanding to good. Therefore, the natural color extracted from Amba Haldi can be a sustainable option for the dyeing of silk fabric in the textile dyeing and finishing industries.


Asunto(s)
Colorantes , Curcuma , Extractos Vegetales , Rizoma , Seda , Curcuma/química , Rizoma/química , Colorantes/química , Extractos Vegetales/química , Seda/química , Microondas , Color , Tecnología Química Verde/métodos
8.
Wiley Interdiscip Rev RNA ; 15(3): e1852, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38715192

RESUMEN

Small RNAs (sRNAs) with sizes ranging from 15 to 50 nucleotides (nt) are critical regulators of gene expression control. Prior studies have shown that sRNAs are involved in a broad range of biological processes, such as organ development, tumorigenesis, and epigenomic regulation; however, emerging evidence unveils a hidden layer of diversity and complexity of endogenously encoded sRNAs profile in eukaryotic organisms, including novel types of sRNAs and the previously unknown post-transcriptional RNA modifications. This underscores the importance for accurate, unbiased detection of sRNAs in various cellular contexts. A multitude of high-throughput methods based on next-generation sequencing (NGS) are developed to decipher the sRNA expression and their modifications. Nonetheless, distinct from mRNA sequencing, the data from sRNA sequencing suffer frequent inconsistencies and high variations emanating from the adapter contaminations and RNA modifications, which overall skew the sRNA libraries. Here, we summarize the sRNA-sequencing approaches, and discuss the considerations and challenges for the strategies and methods of sRNA library construction. The pros and cons of sRNA sequencing have significant implications for implementing RNA fragment footprinting approaches, including CLIP-seq and Ribo-seq. We envision that this review can inspire novel improvements in small RNA sequencing and RNA fragment footprinting in future. This article is categorized under: RNA Evolution and Genomics > Computational Analyses of RNA RNA Processing > Processing of Small RNAs Regulatory RNAs/RNAi/Riboswitches > Biogenesis of Effector Small RNAs.


Asunto(s)
ARN Pequeño no Traducido , ARN Pequeño no Traducido/genética , ARN Pequeño no Traducido/metabolismo , Biblioteca de Genes , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Análisis de Secuencia de ARN/métodos , Humanos , Animales
9.
Front Biosci (Landmark Ed) ; 29(5): 176, 2024 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-38812301

RESUMEN

BACKGROUND: Listeria monocytogenes, a Gram-positive bacterium, is a prominent foodborne pathogen that causes listeriosis and poses substantial health hazards worldwide. The continuing risk of listeriosis outbreaks underlies the importance of designing an effective prevention strategy and developing a robust immune response by reverse vaccinology approaches. This study aimed to provide a critical approach for developing a potent multiepitope vaccine against this foodborne disease. METHODS: A chimeric peptide construct containing 5 B-cell epitopes, 16 major histocompatibility complex I (MHC-I) epitopes, and 18 MHC-II epitopes were used to create a subunit vaccination against L. monocytogenes. The vaccine safety was evaluated by several online methods, and molecular docking was performed using ClusPro to determine the binding affinity. Immune simulation was performed using the C-ImmSimm server to demonstrate the immune response. RESULTS: The results validated the antigenicity, non-allergenicity, and nontoxicity of the chimeric peptide construct, confirming its suitability as a subunit vaccine. Molecular docking showed a good score of 1276.5 and molecular dynamics simulations confirmed the construct's efficacy, demonstrating its promise as a good candidate for listeriosis prophylaxis. The population coverage was as high as 91.04% with a good immune response, indicating good antigen presentation with dendritic cells and production of memory cells. CONCLUSIONS: The findings of this study highlight the potential of the designed chimeric peptide construct as an effective subunit vaccine against Listeria, paving the way for future advances in preventive methods and vaccine design.


Asunto(s)
Vacunas Bacterianas , Biología Computacional , Listeria monocytogenes , Listeriosis , Simulación del Acoplamiento Molecular , Vacunas de Subunidad , Listeria monocytogenes/inmunología , Vacunas Bacterianas/inmunología , Vacunas de Subunidad/inmunología , Listeriosis/prevención & control , Listeriosis/inmunología , Listeriosis/microbiología , Biología Computacional/métodos , Epítopos de Linfocito B/inmunología , Epítopos de Linfocito B/química , Humanos , Epítopos/inmunología , Simulación de Dinámica Molecular , Animales , Enfermedades Transmitidas por los Alimentos/prevención & control , Enfermedades Transmitidas por los Alimentos/microbiología , Enfermedades Transmitidas por los Alimentos/inmunología , Inmunoinformática
10.
Fitoterapia ; 176: 106011, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38740344

RESUMEN

Flavonoids derived from plants offer a broad spectrum of therapeutic potential for addressing metabolic syndrome, particularly diabetes mellitus (DM), a prevalent non-communicable disease. Hyperglycemia in DM is a known risk factor for cardiovascular diseases (CVDs), which substantially impact global mortality rates. This review examines the potential effects of naringin, a citrus flavonoid, on both DM and its associated cardiovascular complications, including conditions like diabetic cardiomyopathy. The safety profile of naringin is summarized based on various pre-clinical studies. The data for this review was gathered from diverse electronic databases, including Medline, PubMed, ScienceDirect, SpringerLink, Google Scholar, and Emerald Insight. Multiple pre-clinical studies have demonstrated that naringin exerts hypoglycemic and cardioprotective effects by targeting various vascular mechanisms. Specifically, research indicates that naringin down-regulates the renin-angiotensin and oxidative stress systems while concurrently upregulating ß-cell and immune system functions. Clinical trial outcomes also support the therapeutic potential of naringin in managing hyperglycemic states and associated cardiovascular issues. Moreover, toxicity studies have confirmed the safety of naringin in animal models, suggesting its potential for safe administration in humans. In conclusion, naringin emerges as a promising natural candidate for both antidiabetic and cardioprotective purposes, offering potential improvements in health outcomes. While naringin presents a new avenue for therapies targeting DM and CVDs, additional controlled and long-term clinical trials are necessary to validate its efficacy and safety for human use.


Asunto(s)
Cardiotónicos , Flavanonas , Hipoglucemiantes , Flavanonas/farmacología , Flavanonas/uso terapéutico , Humanos , Animales , Cardiotónicos/farmacología , Cardiotónicos/uso terapéutico , Hipoglucemiantes/farmacología , Hipoglucemiantes/uso terapéutico , Diabetes Mellitus/tratamiento farmacológico , Enfermedades Cardiovasculares/tratamiento farmacológico , Cardiomiopatías Diabéticas/tratamiento farmacológico , Cardiomiopatías Diabéticas/prevención & control , Estrés Oxidativo/efectos de los fármacos , Sistema Renina-Angiotensina/efectos de los fármacos
11.
Int Immunopharmacol ; 135: 112287, 2024 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-38776850

RESUMEN

Achromobacter xylosoxidans is an aerobic, catalase-positive, non-pigment-forming, Gram-negative, and motile bacterium. It potentially causes a wide range of human infections in cystic fibrosis and non-cystic fibrosis patients. However, developing a safe preventive or therapeutic solution against A. xylosoxidans remains challenging. This study aimed to construct an epitope-based vaccine candidate using immunoinformatic techniques. A. xylosoxidans was isolated from an auto workshop in Lahore, and its identification was confirmed through 16S rRNA amplification and bioinformatic analysis. Two protein targets with GenBank accession numbers AKP90890.1 and AKP90355.1 were selected for the vaccine construct. Both proteins exhibited antigenicity, with scores of 0.757 and 0.580, respectively and the epitopes were selected based on the IC50 value using the ANN 4.0 and NN-align 2.3 epitope prediction method for MHC I and MHC II epitopes respectively and predicted epitopes were analyzed for antigenicity, allergenicity and pathogenicity. The vaccine construct demonstrated structural stability, thermostability, solubility, and hydrophilicity. The vaccine produced 250 B-memory cells per mm3 and approximately 16,000 IgM + IgG counts, indicating an effective immune response against A. xylosoxidans. Moreover, the vaccine candidate interacted stably with toll-like receptor 5, a pattern recognition receptor, with a confidence score of 0.98. These results highlight the potency of the designed vaccine candidate, suggesting its potential to withstand rigorous in vitro and in vivo clinical trials. This epitope-based vaccine could serve as the first preventive immunotherapy against A. xylosoxidans infections, addressing this bacterium's health and financial burdens. The findings demonstrate the value of employing immunoinformatic tools in vaccine development, paving the way for more precise and tailored approaches to combating microbial threats.


Asunto(s)
Achromobacter denitrificans , Vacunas Bacterianas , Infecciones por Bacterias Gramnegativas , ARN Ribosómico 16S , Achromobacter denitrificans/inmunología , Achromobacter denitrificans/genética , Vacunas Bacterianas/inmunología , Humanos , ARN Ribosómico 16S/genética , Infecciones por Bacterias Gramnegativas/inmunología , Infecciones por Bacterias Gramnegativas/prevención & control , Infecciones por Bacterias Gramnegativas/microbiología , Animales , Epítopos/inmunología , Simulación por Computador , Femenino , Anticuerpos Antibacterianos/inmunología , Anticuerpos Antibacterianos/sangre , Ratones , Biología Computacional , Antígenos Bacterianos/inmunología , Antígenos Bacterianos/genética
13.
Z Naturforsch C J Biosci ; 79(7-8): 209-220, 2024 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-38635803

RESUMEN

Pancreatic cancer is a fatal illness caused by mutations in multiple genes. Pancreatic cancer damages the organ that helps in digestion, resulting in symptoms including fatigue, bloating, and nausea. The use of medicinal plants has been crucial in the treatment of numerous disorders. The medicinal plant Calliandra Harrisi has been widely exploited for its possibilities in biology and medicine. The current study aimed to assess the biopotential of biologically active substances against pancreatic cancer. The GC-MS data of these phytochemicals from Calliandra Harrisi were further subjected to computational approaches with pancreatic cancer genes to evaluate their potential as therapeutic candidates. Molecular docking analysis revealed that N-[Carboxymethyl] maleamic acid is the leading molecule responsible for protein denaturation inhibition, having the highest binding affinity of 6.8 kJ/mol among all other compounds with KRAS inflammatory proteins. Furthermore, ADMET analysis and Lipinski's rule validation were also performed revealing its higher absorption in the gastrointestinal tract. The results of the hepatotoxicity test demonstrated that phytochemicals are non-toxic, safe to use, and do not cause necrosis, fibrosis, or vacuolar degeneration even at excessive levels. Calliandra Harrisi has phytoconstituents that have a variety of pharmacological uses in consideration.


Asunto(s)
Diseño de Fármacos , Cromatografía de Gases y Espectrometría de Masas , Simulación del Acoplamiento Molecular , Neoplasias Pancreáticas , Neoplasias Pancreáticas/tratamiento farmacológico , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/patología , Humanos , Medicina de Precisión/métodos , Extractos Vegetales/química , Extractos Vegetales/farmacología , Antineoplásicos Fitogénicos/farmacología , Antineoplásicos Fitogénicos/química , Proteínas Proto-Oncogénicas p21(ras)/genética , Proteínas Proto-Oncogénicas p21(ras)/antagonistas & inhibidores , Plantas Medicinales/química , Plantas Medicinales/genética , Simulación por Computador , Fitoquímicos/química , Fitoquímicos/farmacología
14.
Z Naturforsch C J Biosci ; 79(7-8): 221-234, 2024 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-38661096

RESUMEN

The common bacterium Escherichia coli has demonstrated potential in the field of biodegradation. E. coli is naturally capable of biodegradation because it carries a variety of enzymes that are essential for the breakdown of different substances. The degradation process is effectively catalyzed by these enzymes. The collaborative effects of E. coli's aryl sulfotransferase, alkanesulfonate moonoxygenase, and azoreductase enzymes on the breakdown of sulfur dyes from industrial effluents are investigated in this work. ExPASY ProtParam was used to confirm the stability of the enzyme, showing an instability index less than 40. We determined the maximum binding affinities of these enzymes with sulfur dye pollutants - 1-naphthalenesulfonic acid, sulfogene, sulfur green 3, sulfur red 6, sulfur red 1, sulfur yellow 2, thianthrene, thiazone, and thional - using comparative molecular docking. Significantly, the highest binding affinity was shown by monooxygenase (-12.1), whereas aryl sulfotransferase and azoreductase demonstrated significant energies of -11.8 and -11.4, respectively. The interactions between proteins and ligands in the docked complexes were examined. To evaluate their combined effects, co-expression analysis of genes and enzyme bioengineering were carried out. Using aryl sulfotransferase, alkanesulfonate monooxygenase, and azoreductase, this study investigates the enzymatic degradation of sulfur dye pollutants, thereby promoting environmentally friendly and effective sulfur dye pollutant management.


Asunto(s)
Biodegradación Ambiental , Colorantes , Escherichia coli , Simulación del Acoplamiento Molecular , Nitrorreductasas , Escherichia coli/genética , Escherichia coli/metabolismo , Colorantes/metabolismo , Colorantes/química , Nitrorreductasas/metabolismo , Nitrorreductasas/química , Nitrorreductasas/genética , Arilsulfotransferasa/metabolismo , Arilsulfotransferasa/genética , Arilsulfotransferasa/química , Proteínas de Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/química , Azufre/metabolismo , Azufre/química
15.
Front Biosci (Landmark Ed) ; 29(4): 147, 2024 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-38682181

RESUMEN

BACKGROUND: Lactiplantibacillus plantarum 12-3 holds great promise as a probiotic bacterial strain, yet its full potential remains untapped. This study aimed to better understand this potential therapeutic strain by exploring its genomic landscape, genetic diversity, CRISPR-Cas mechanism, genotype, and mechanistic perspectives for probiotic functionality and safety applications. METHODS: L. plantarum 12-3 was isolated from Tibetan kefir grains and, subsequently, Illumina and Single Molecule Real-Time (SMRT) technologies were used to extract and sequence genomic DNA from this organism. After performing pan-genomic and phylogenetic analysis, Average Nucleotide Identity (ANI) was used to confirm the taxonomic identity of the strain. Antibiotic resistance gene analysis was conducted using the Comprehensive Antibiotic Resistance Database (CARD). Antimicrobial susceptibility testing, and virulence gene identification were also included in our genomic analysis to evaluate food safety. Prophage, genomic islands, insertion sequences, and CRISPR-Cas sequence analyses were also carried out to gain insight into genetic components and defensive mechanisms within the bacterial genome. RESULTS: The 3.4 Mb genome of L. plantarum 12-3, was assembled with 99.1% completeness and low contamination. A total of 3234 genes with normal length and intergenic spacing were found using gene prediction tools. Pan-genomic studies demonstrated gene diversity and provided functional annotation, whereas phylogenetic analysis verified taxonomic identity. Our food safety study revealed a profile of antibiotic resistance that is favorable for use as a probiotic. Analysis of insertional sequences, genomic islands, and prophage within the genome provided information regarding genetic components and their possible effects on evolution. CONCLUSIONS: Pivotal genetic elements uncovered in this study play a crucial role in bacterial defense mechanisms and offer intriguing prospects for future genome engineering efforts. Moreover, our findings suggest further in vitro and in vivo studies are warranted to validate the functional attributes and probiotic potential of L. plantarum 12-3. Expanding the scope of the research to encompass a broader range of L. plantarum 12-3 strains and comparative analyses with other probiotic species would enhance our understanding of this organism's genetic diversity and functional properties.


Asunto(s)
Genoma Bacteriano , Kéfir , Filogenia , Probióticos , Tibet , Kéfir/microbiología , Farmacorresistencia Bacteriana/genética , Lactobacillus plantarum/genética , Antibacterianos/farmacología , Secuenciación Completa del Genoma , Sistemas CRISPR-Cas
16.
Sci Rep ; 14(1): 8563, 2024 04 12.
Artículo en Inglés | MEDLINE | ID: mdl-38609487

RESUMEN

Heavy metal accumulation increases rapidly in the environment due to anthropogenic activities and industrialization. The leather and surgical industry produces many contaminants containing heavy metals. Cadmium, a prominent contaminant, is linked to severe health risks, notably kidney and liver damage, especially among individuals exposed to contaminated wastewater. This study aims to leverage the natural cadmium resistance mechanisms in bacteria for bioaccumulation purposes. The industrial wastewater samples, characterized by an alarming cadmium concentration of 29.6 ppm, 52 ppm, and 76.4 ppm-far exceeding the recommended limit of 0.003 ppm-were subjected to screening for cadmium-resistant bacteria using cadmium-supplemented media with CdCl2. 16S rRNA characterization identified Vibrio cholerae and Proteus mirabilis as cadmium-resistant bacteria in the collected samples. Subsequently, the cadmium resistance-associated cadA gene was successfully amplified in Vibrio species and Proteus mirabilis, revealing a product size of 623 bp. Further analysis of the identified bacteria included the examination of virulent genes, specifically the tcpA gene (472 bp) associated with cholera and the UreC gene (317 bp) linked to urinary tract infections. To enhance the bioaccumulation of cadmium, the study proposes the potential suppression of virulent gene expression through in-silico gene-editing tools such as CRISPR-Cas9. A total of 27 gRNAs were generated for UreC, with five selected for expression. Similarly, 42 gRNA sequences were generated for tcpA, with eight chosen for expression analysis. The selected gRNAs were integrated into the lentiCRISPR v2 expression vector. This strategic approach aims to facilitate precise gene editing of disease-causing genes (tcpA and UreC) within the bacterial genome. In conclusion, this study underscores the potential utility of Vibrio species and Proteus mirabilis as effective candidates for the removal of cadmium from industrial wastewater, offering insights for future environmental remediation strategies.


Asunto(s)
Cólera , Infecciones Urinarias , Vibrio , Humanos , Proteus mirabilis/genética , Cadmio/toxicidad , Sistemas CRISPR-Cas/genética , ARN Ribosómico 16S , Aguas Residuales , ARN Guía de Sistemas CRISPR-Cas , Vibrio/genética
17.
Polymers (Basel) ; 16(7)2024 Apr 07.
Artículo en Inglés | MEDLINE | ID: mdl-38611264

RESUMEN

Polyethylene-, polyvinylidene chloride-, and per- and polyfluoroalkyl substance-coated paper generate microplastics or fluorochemicals in the environment. Here, we report an approach for the development of oil-resistant papers using an environmentally friendly, fluorine-free, water-dispersible poly(dimethylsiloxane) (PDMS) coating on kraft paper. Carboxylic-functionalized PDMS (PDMS-COOH) was synthesized and subsequently neutralized with ammonium bicarbonate to obtain a waterborne emulsion, which was then coated onto kraft paper. The water resistance of the coated paper was determined via Cobb60 measurements. The Cobb60 value was reduced to 2.70 ± 0.14 g/m2 as compared to 87.6 ± 5.1 g/m2 for uncoated paper, suggesting a remarkable improvement in water resistance. Similarly, oil resistance was found to be 12/12 on the kit test scale versus 0/12 for uncoated paper. In addition, the coated paper retained 70-90% of its inherent mechanical properties, and more importantly, the coated paper was recycled via pulp recovery using a standard protocol with a 91.1% yield.

18.
Artículo en Inglés | MEDLINE | ID: mdl-38613617

RESUMEN

Due to its alleged health advantages, several uses in biotechnology and food safety, the well-known probiotic strain Lactiplantibacillus plantarum K25 has drawn interest. This in-depth investigation explores the genetic diversity, makeup, and security characteristics of the microbial genome of L. plantarum K25, providing insightful knowledge about its genotypic profile and functional characteristics. Utilizing cutting-edge bioinformatics techniques like comparative genomics, pan-genomics, and genotypic profiling was carried out to reveal the strain's multidimensional potential in various fields. The results not only add to our understanding of the genetic makeup of L. plantarum K25 but also show off its acceptability in various fields, notably in biotechnology and food safety. The explanation of evolutionary links, which highlights L. plantarum K25's aptitude as a probiotic, is one notable finding from this research. Its safety profile, which is emphasized by the absence of genes linked to antibiotic resistance, is crucial and supports its status as a promising probiotic option.

19.
J Trace Elem Med Biol ; 84: 127448, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38626650

RESUMEN

INTRODUCTION: S. mutans has been identified as the primary pathogenic bacterium in biofilm-mediated dental caries. The biogenic selenium nanoparticles (SeNPs) produced by L. plantarum KNF-5 were used in this study against S. mutans ATCC 25175. OBJECTIVES: The aims of this study were: (1) the biosynthesis of SeNPs by L. plantarum KNF-5, (2) the characterization of SeNPs, (3) the investigation of the inhibitory effect of biogenic SeNPs against S. mutans ATCC 25175, and (4) the determination of the anti-biofilm potential of SeNPS against S. mutans ATCC 25175. METHODOLOGY: 3 mL of the culture was added to 100 mL of MRS medium and incubated. After 4 h, Na2SeO3 solution (concentration 100 µg/mL) was added and incubated at 37 °C for 36 h. The color of the culture solution changed from brownish-yellow to reddish, indicating the formation of SeNPs. The characterization of SeNPs was confirmed by UV-Vis spectrophotometry, FTIR, SEM-EDS and a particle size analyzer. The antibacterial activity was determined by the disk diffusion method, the MIC by the micro-double dilution method, and the biofilm inhibitory potential by the crystal violet method and the MTT assay. The effect of SeNPs on S. mutans ATCC 25175 was determined using SEM and CLSM spectrometry techniques. The sulfate-anthrone method was used to analyze the effect of SeNPs on insoluble extracellular polysaccharides. The expression of genes in S. mutans ATCC 25175 was analyzed by real-time quantitative polymerase chain reaction (RT-qPCR). PREPARATION OF NANOPARTICLES: SeNPs produced by probiotic bacteria are considered a safe method. In this study, L. plantarum KNF-5 (probiotic strain) was used for the production of SeNPs. RESULTS: The biogenic SeNPs were spherical and coated with proteins and polysaccharides and had a diameter of about 270 nm. The MIC of the SeNPs against S. mutans ATCC 25175 was 3.125 mg/mL. Biofilm growth was also significantly suppressed at this concentration. The expression of genes responsible for biofilm formation (GtfB, GtfC, BrpA and GbpB,) was reduced when S. mutans ATCC 25175 was treated with SeNPs. CONCLUSION: It was concluded that the biogenic SeNPs produced by L. plantarum KNF-5 was highly effective to inhibit the growth of S. mutans ATCC 25175. NOVELTY STATEMENT: The application of biogenic SeNPs, a natural anti-biofilm agent against S. mutans ATCC 25175. In the future, this study will provide a new option for the prevention and treatment of dental caries.


Asunto(s)
Antibacterianos , Biopelículas , Pruebas de Sensibilidad Microbiana , Nanopartículas , Selenio , Streptococcus mutans , Streptococcus mutans/efectos de los fármacos , Streptococcus mutans/fisiología , Biopelículas/efectos de los fármacos , Selenio/farmacología , Selenio/química , Nanopartículas/química , Antibacterianos/farmacología , Antibacterianos/química , Lactobacillus plantarum/química , Lactobacillus plantarum/metabolismo , Tamaño de la Partícula
20.
NPJ Digit Med ; 7(1): 79, 2024 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-38532080

RESUMEN

Remote monitoring of cognition holds the promise to facilitate case-finding in clinical care and the individual detection of cognitive impairment in clinical and research settings. In the context of Alzheimer's disease, this is particularly relevant for patients who seek medical advice due to memory problems. Here, we develop a remote digital memory composite (RDMC) score from an unsupervised remote cognitive assessment battery focused on episodic memory and long-term recall and assess its construct validity, retest reliability, and diagnostic accuracy when predicting MCI-grade impairment in a memory clinic sample and healthy controls. A total of 199 participants were recruited from three cohorts and included as healthy controls (n = 97), individuals with subjective cognitive decline (n = 59), or patients with mild cognitive impairment (n = 43). Participants performed cognitive assessments in a fully remote and unsupervised setting via a smartphone app. The derived RDMC score is significantly correlated with the PACC5 score across participants and demonstrates good retest reliability. Diagnostic accuracy for discriminating memory impairment from no impairment is high (cross-validated AUC = 0.83, 95% CI [0.66, 0.99]) with a sensitivity of 0.82 and a specificity of 0.72. Thus, unsupervised remote cognitive assessments implemented in the neotiv digital platform show good discrimination between cognitively impaired and unimpaired individuals, further demonstrating that it is feasible to complement the neuropsychological assessment of episodic memory with unsupervised and remote assessments on mobile devices. This contributes to recent efforts to implement remote assessment of episodic memory for case-finding and monitoring in large research studies and clinical care.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA