Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Eur Respir J ; 60(5)2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-35728977

RESUMEN

BACKGROUND: Bronchiectasis can result from infectious, genetic, immunological and allergic causes. 60-80% of cases are idiopathic, but a well-recognised genetic cause is the motile ciliopathy, primary ciliary dyskinesia (PCD). Diagnosis of PCD has management implications including addressing comorbidities, implementing genetic and fertility counselling and future access to PCD-specific treatments. Diagnostic testing can be complex; however, PCD genetic testing is moving rapidly from research into clinical diagnostics and would confirm the cause of bronchiectasis. METHODS: This observational study used genetic data from severe bronchiectasis patients recruited to the UK 100,000 Genomes Project and patients referred for gene panel testing within a tertiary respiratory hospital. Patients referred for genetic testing due to clinical suspicion of PCD were excluded from both analyses. Data were accessed from the British Thoracic Society audit, to investigate whether motile ciliopathies are underdiagnosed in people with bronchiectasis in the UK. RESULTS: Pathogenic or likely pathogenic variants were identified in motile ciliopathy genes in 17 (12%) out of 142 individuals by whole-genome sequencing. Similarly, in a single centre with access to pathological diagnostic facilities, 5-10% of patients received a PCD diagnosis by gene panel, often linked to normal/inconclusive nasal nitric oxide and cilia functional test results. In 4898 audited patients with bronchiectasis, <2% were tested for PCD and <1% received genetic testing. CONCLUSIONS: PCD is underdiagnosed as a cause of bronchiectasis. Increased uptake of genetic testing may help to identify bronchiectasis due to motile ciliopathies and ensure appropriate management.


Asunto(s)
Bronquiectasia , Trastornos de la Motilidad Ciliar , Ciliopatías , Síndrome de Kartagener , Humanos , Mutación , Bronquiectasia/diagnóstico , Bronquiectasia/genética , Cilios , Trastornos de la Motilidad Ciliar/diagnóstico , Trastornos de la Motilidad Ciliar/genética , Ciliopatías/complicaciones , Síndrome de Kartagener/diagnóstico , Síndrome de Kartagener/genética
3.
Mol Psychiatry ; 22(3): 336-345, 2017 03.
Artículo en Inglés | MEDLINE | ID: mdl-28093568

RESUMEN

The complex nature of human cognition has resulted in cognitive genomics lagging behind many other fields in terms of gene discovery using genome-wide association study (GWAS) methods. In an attempt to overcome these barriers, the current study utilized GWAS meta-analysis to examine the association of common genetic variation (~8M single-nucleotide polymorphisms (SNP) with minor allele frequency ⩾1%) to general cognitive function in a sample of 35 298 healthy individuals of European ancestry across 24 cohorts in the Cognitive Genomics Consortium (COGENT). In addition, we utilized individual SNP lookups and polygenic score analyses to identify genetic overlap with other relevant neurobehavioral phenotypes. Our primary GWAS meta-analysis identified two novel SNP loci (top SNPs: rs76114856 in the CENPO gene on chromosome 2 and rs6669072 near LOC105378853 on chromosome 1) associated with cognitive performance at the genome-wide significance level (P<5 × 10-8). Gene-based analysis identified an additional three Bonferroni-corrected significant loci at chromosomes 17q21.31, 17p13.1 and 1p13.3. Altogether, common variation across the genome resulted in a conservatively estimated SNP heritability of 21.5% (s.e.=0.01%) for general cognitive function. Integration with prior GWAS of cognitive performance and educational attainment yielded several additional significant loci. Finally, we found robust polygenic correlations between cognitive performance and educational attainment, several psychiatric disorders, birth length/weight and smoking behavior, as well as a novel genetic association to the personality trait of openness. These data provide new insight into the genetics of neurocognitive function with relevance to understanding the pathophysiology of neuropsychiatric illness.


Asunto(s)
Cognición/fisiología , Trastornos Neurocognitivos/genética , Adulto , Alelos , Femenino , Frecuencia de los Genes/genética , Estudios de Asociación Genética/métodos , Sitios Genéticos/genética , Predisposición Genética a la Enfermedad/genética , Variación Genética/genética , Estudio de Asociación del Genoma Completo/métodos , Humanos , Masculino , Persona de Mediana Edad , Herencia Multifactorial/genética , Polimorfismo de Nucleótido Simple/genética , Población Blanca/genética
4.
Clin Genet ; 88(4): 386-90, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-25256757

RESUMEN

A novel X-linked intellectual disability (XLID) syndrome with moderate intellectual disability and distinguishing craniofacial dysmorphisms had been previously mapped to the Xq26-q27 interval. On whole exome sequencing in the large family originally reported with this disorder, we identified a 23 bp frameshift deletion in the RNA binding motif protein X-linked (RBMX) gene at Xq26 in the affected males (n = 7), one carrier female, absent in unaffected males (n = 2) and in control databases (7800 exomes). The RBMX gene has not been previously causal of human disease. We examined the genic intolerance scores for the coding regions and the non-coding regions of RBMX; the findings were indicative of RBMX being relatively intolerant to loss of function variants, a distinctive pattern seen in a subset of XLID genes. Prior expression and animal modeling studies indicate that loss of function of RBMX results in abnormal brain development. Our finding putatively adds a novel gene to the loci associated with XLID and may enable the identification of other individuals affected with this distinctive syndrome.


Asunto(s)
Exoma , Ribonucleoproteínas Nucleares Heterogéneas/genética , Discapacidad Intelectual Ligada al Cromosoma X/genética , Adolescente , Adulto , Anciano , Análisis Mutacional de ADN , Femenino , Estudios de Asociación Genética , Humanos , Masculino , Persona de Mediana Edad , Linaje
6.
Ann Hum Genet ; 70(Pt 3): 293-303, 2006 May.
Artículo en Inglés | MEDLINE | ID: mdl-16674552

RESUMEN

Human and animal studies have implicated dopamine in appetite regulation, and family studies have shown that BMI has a strong genetic component. Dopamine availability is controlled largely by three enzymes: COMT, MAOA and MAOB, and by the dopamine transporter SLC6A3, and each gene has a well-characterized functional variant. Here we look at these four functional polymorphisms together, to investigate how heritable variation in dopamine levels influences the risk of obesity in a cohort of 1150, including 240 defined as obese (BMI > or = 30). The COMT and SLC6A3 polymorphisms showed no association with either weight, BMI or obesity risk. We found, however, that both MAOA and MAOB show an excess of the low-activity genotypes in obese individuals (MAOA:chi2= 15.45, p = 0.004; MAOB:chi2= 8.05, p = 0.018). Additionally, the MAOA genotype was significantly associated with both weight (p = 0.0005) and BMI (p = 0.001). When considered together, the 'at risk genotype'--low activity genotypes at both the MAOA and MAOB loci--shows a relative risk for obesity of 5.01. These results have not been replicated and, given the experience of complex trait genetics, warrant caution in interpretation. In implicating both the MAOA and MOAB variants, however, this study provides the first indication that dopamine availability (as opposed to other effects of MAOA) is involved in human obesity. It is therefore a priority to assess the associations in replication datasets.


Asunto(s)
Dopamina/metabolismo , Obesidad/genética , Polimorfismo Genético , Índice de Masa Corporal , Peso Corporal/genética , Catecol O-Metiltransferasa/genética , Proteínas de Transporte de Dopamina a través de la Membrana Plasmática/genética , Predisposición Genética a la Enfermedad , Genotipo , Humanos , Monoaminooxidasa/genética
7.
Genes Brain Behav ; 2(3): 132-9, 2003 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-12931786

RESUMEN

Environmental enrichment and postnatal handling have been shown to improve learning and memory in the Morris water maze, and to rescue impairments caused by genetic modification, age or genetic background. Mice with a targeted point mutation that prevents autophosphorylation at threonine-286 of the alpha-isoform of the Ca2+/calmodulin-dependent kinase II have impaired hippocampus-dependent and -independent strategy learning and memory in the water maze. We have investigated whether these impairments can be rescued with a combination of postnatal handling and environmental enrichment in a hybrid genetic background. Severe impairments were seen in acquisition and probe trials in both enriched and nonenriched mutants, indicating that enrichment did not rescue the learning and memory impairments. However, enrichment did rescue a specific performance deficit; enhanced floating behaviour, in the mutants. In summary, we have shown the lack of autophosphorylation of the alpha-isoform of the Ca2+/calmodulin-dependent kinase II prevents enrichment-induced rescues of strategy learning and memory impairments. Furthermore, we have established that there are enrichment mechanisms that are independent of this autophosphorylation.


Asunto(s)
Proteínas Quinasas Dependientes de Calcio-Calmodulina/metabolismo , Ambiente , Manejo Psicológico , Aprendizaje por Laberinto/fisiología , Animales , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina , Proteínas Quinasas Dependientes de Calcio-Calmodulina/genética , Femenino , Masculino , Ratones , Ratones Mutantes , Fosforilación , Mutación Puntual
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA